版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年安徽阜阳市临泉县第一中学高三下学期十月阶段性考试试题数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若方程恰有两个不同实根,则正数m的取值范围为()A. B.C. D.2.设,,,则、、的大小关系为()A. B. C. D.3.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.4.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.5.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.6.在中,,,,则在方向上的投影是()A.4 B.3 C.-4 D.-37.集合,,则()A. B. C. D.8.若变量,满足,则的最大值为()A.3 B.2 C. D.109.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,.)A.4.56% B.13.59% C.27.18% D.31.74%10.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C. D.11.已知锐角满足则()A. B. C. D.12.设函数的定义域为,命题:,的否定是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.14.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.15.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为_______________.16.已知函数为偶函数,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中为自然对数的底数,.(1)若曲线在点处的切线与直线平行,求的值;(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由.18.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且.(1)求点的坐标;(2)求的取值范围.19.(12分)已知均为正实数,函数的最小值为.证明:(1);(2).20.(12分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1.(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由.21.(12分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.22.(10分)已知椭圆C:()的左、右焦点分别为,,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案.【详解】当时,,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,,故,,,,.根据图像知:.故选:.本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.2.D【解析】
因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.3.D【解析】
利用复数代数形式的乘除运算化简,再由实部为求得值.【详解】解:在复平面内所对应的点在虚轴上,,即.故选D.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.4.D【解析】
设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.5.C【解析】
由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C本题考查三角函数的周期与频率,考查理解分析能力.6.D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,,,又,,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.7.A【解析】
解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A.本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.8.D【解析】
画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.9.B【解析】试题分析:由题意故选B.考点:正态分布10.D【解析】
本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D。本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。11.C【解析】
利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.12.D【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】
直接根据分层抽样的比例关系得到答案.【详解】分层抽样的抽取比例为,∴抽取学生的人数为6001.故答案为:1.本题考查了分层抽样的计算,属于简单题.14.【解析】
设圆柱的轴截面的边长为x,可求得,代入圆柱的表面积公式,即得解【详解】设圆柱的轴截面的边长为x,则由,得,∴.故答案为:本题考查了圆柱的轴截面和表面积,考查了学生空间想象,转化划归,数学运算的能力,属于基础题.15.【解析】试题分析:从编号分别为1,1,3,4,5的5个红球和5个黑球,从中随机取出4个,有种不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的;设事件为“取出球的编号互不相同”,则事件包含了个基本事件,所以.考点:1.计数原理;1.古典概型.16.【解析】
根据偶函数的定义列方程,化简求得的值.【详解】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)没有,理由见解析【解析】
(1)求导,研究函数在x=0处的导数,等于切线斜率,即得解;(2)对f(x)求导,构造,可证得,得到,即得解【详解】(1)由题意得,∵曲线在点处的切线与直线平行,∴切线的斜率为,解得.(2)当时,,,设,则,则函数在区间上单调递减,在区间上单调递增,又函数,故恒成立,∴函数在定义域内单调递增,函数不存在极值点.本题考查了导数在切线问题和函数极值问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.18.(1);(2).【解析】
(1)设出的坐标,代入,结合在抛物线上,求得两点的横坐标,进而求得点的坐标.(2)设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,结合,求得的表达式,结合二次函数的性质求得的取值范围.【详解】(1)可知,设则,又,所以解得所以.(2)据题意,直线的斜率必不为所以设将直线方程代入椭圆的方程中,整理得,设则①②因为所以且将①式平方除以②式得所以又解得又,所以令,则所以本小题主要考查直线和抛物线的位置关系,考查直线和椭圆的位置关系,考查向量数量积的坐标运算,考查向量模的坐标运算,考查化归与转化的数学思想方法,考查运算求解能力,属于难题.19.(1)证明见解析(2)证明见解析【解析】
(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件.【详解】(1)由题意,则函数,又函数的最小值为,即,由柯西不等式得,当且仅当时取“=”.故.(2)由题意,利用基本不等式可得,,,(以上三式当且仅当时同时取“=”)由(1)知,,所以,将以上三式相加得即.本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.20.(1)(2)是为定值,的横坐标为定值【解析】
(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.【详解】(1)依题意可知,解得,即;而,即,结合解得,,因此椭圆方程为(2)由题意得,左焦点,设直线的方程为:,,.由消去并整理得,∴,.直线的方程为:,直线的方程为:.联系方程,解得,又因为.所以.所以的横坐标为定值.本小题主要考查根据椭圆离心率求椭圆方程,考查直线和椭圆的位置关系,考查直线和直线交点坐标的求法,考查运算求解能力,属于中档题.21.(1);(2)证明见解析【解析】
(1)由恒成立,可得恒成立,进而构造函数,求导可判断出的单调性,进而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,则,,进而可得,即曲线的方程为,进而只需证明对任意,方程有唯一解,然后构造函数,分、和三种情况,分别证明函数在上有唯一的零点,即可证明结论成立.【详解】(1)由题意,可知,由恒成立,可得恒成立.令,则.令,则,,,在上单调递增,又,时,;时,,即时,;时,,时,单调递减;时,单调递增,时,取最小值,.(2)证明:由,令,由,结合二次函数性质可知,存在唯一的,使得,故存在唯一的极值点,则,,,曲线的方程为.故只需证明对任意,方程有唯一解.令,则,①当时,恒成立,在上单调递增.,,,存在满足时,使得.又单调递增,所以为唯一解.②当时,二次函数,满足,则恒成立,在上单调递增.,,存在使得,又在上单调递增,为唯一解.③当时,二次函数,满足,此时有两个不同的解,不妨设,,,列表如下:00↗极大值↘极小值↗由表可知,当时,的极大值为.,,,,,..下面来证明,构造函数,则,当时,,此时单调递增,,时,,,故成立.,存在,使得.又在单调递增,为唯一解.所以,对任意,方程有唯一解,即过原点任意的直线与曲线有且仅有一个公共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道德讲堂活动总结
- 管理人员的年度工作计划8篇
- 开学学生演讲稿范文(33篇)
- 高三冲刺的加油稿范文(3篇)
- 责任胜于能力读后心得体会
- 设计承诺书15篇
- 陕西省西安市2024-2025学年高一上学期期中物理试卷(无答案)
- 广东省汕头市潮阳区2024-2025学年高一上学期11月期中英语试题(无答案)
- 广东高考语文三年模拟真题(21-23年)知识点汇编-文学类文本阅读
- 标准劳务外包协议
- GB/T 25840-2010规定电气设备部件(特别是接线端子)允许温升的导则
- GB/T 12239-2008工业阀门金属隔膜阀
- GB/T 10822-2003一般用途织物芯阻燃输送带
- 微生物实验室管理培训考核试题含
- 手机摄影PPT学习课件(摄影的七大要素)
- 家务劳动我能行-完整版课件
- 部编版二年级语文上册第9课-黄山奇石课件
- DB42T1319-2021绿色建筑设计与工程验收标准
- 市政给排水管道安装工程监理细则
- 结直肠的锯齿状病变及其肿瘤课件
- 部编版小学语文六年级上册单元考点总结(全册)课件
评论
0/150
提交评论