2021-2022学年江西省吉安市泰和县九年级(上)期末数学试卷_第1页
2021-2022学年江西省吉安市泰和县九年级(上)期末数学试卷_第2页
2021-2022学年江西省吉安市泰和县九年级(上)期末数学试卷_第3页
2021-2022学年江西省吉安市泰和县九年级(上)期末数学试卷_第4页
2021-2022学年江西省吉安市泰和县九年级(上)期末数学试卷_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2021-2022学年江西省吉安市泰和县九年级(上)期末数学试卷一、精心选一选(本大题共6小题,每小题3分,共18分)1.(3分)二次函数y=(x﹣2)2+7的顶点坐标是()A.(﹣2,7) B.(2,7) C.(﹣2,﹣7) D.(2,﹣7)2.(3分)从甲、乙、丙三名男生和A、B两名女生中随机选出一名学生参加问卷调查,则选出女生的可能性是()A. B. C. D.3.(3分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1004.(3分)关于反比例函数y=,下列说法中错误的是()A.它的图象分布在一、三象限 B.当x>0时,y的值随x的增大而减小 C.当x>﹣1时,y<﹣3 D.若点(a,b)在它的图象上,则(b,a)也在图象上5.(3分)如图,△ABC中,BD、CE是两条中线,则S△ADE:S△DEF=()A.2:1 B.4:1 C.3:1 D.5:26.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A. B. C. D.二、耐心填一填(本大题共6小题,每小题3分,共18分)7.(3分)若,则的值为.8.(3分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为.9.(3分)如图,在菱形ABCD中,点E是CD上一点,连接AE交对角线BD于点F,连接CF,若∠AED=50°,则∠BCF=度.10.(3分)一元二次方程x2﹣4x+2=0的两根为x1,x2,则x12﹣4x1+2x1x2的值为.11.(3分)如图,A、B两点分别在反比例函数y=(x>0)和y=(x>0)的图象上,且AB∥x轴,C为x轴上任意一点,则△ABC的面积为.12.(3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.三、细心做一做(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:2(x﹣1)=x(x﹣1);(2)计算:|﹣3|+4sin45°﹣tan60°.14.(6分)如图,已知平行四边形ABCD,若M,N是BD上两点,且BM=DN,AC=2MO.求证:四边形AMCN是矩形.15.(6分)已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.16.(6分)如图,在所给的8×8方格纸中,每个小正方形的边长均相等,小正方形的顶点叫格点,点A,B均在格点上.请画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正形的顶点上).(1)在图1中画出一个以AB为边的矩形.(2)在图2中画出一个以AB为对角线的正方形.17.(6分)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.四、沉着冷静,周密考虑(本大题共3小题,每小题8分,共24分)18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=4,AD=8,求AE的长.20.(8分)为助力泰和县“四城同创“(全国文明城市、全国卫生县城、国家森林城市、省级生态园林城市)工作深入开展,某校组织志愿者进行宣传活动.班主任陈老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,陈老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中“是事件,“小悦被抽中“是事件(填“不可能“或“必然“或“随机“);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠和小艳被同时抽中“的概率.五、开动脑筋,再接再厉(本大题共2小题,每小题9分,共18分)21.(9分)某商场经营某种品牌的玩具,购进的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具,(1)设该种品牌玩具的销售单价为x元,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于45元,且商场要完成不少于480件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?22.(9分)如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.六、充满信心,成功在望(本大题共12分)23.(12分)如图,抛物线y=ax²+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴相交于A、B两点,与y轴相交于C,OA=OC,点A的坐标为(﹣3,0).(1)求抛物线的表达式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

2021-2022学年江西省吉安市泰和县九年级(上)期末数学试卷参考答案与试题解析一、精心选一选(本大题共6小题,每小题3分,共18分)1.(3分)二次函数y=(x﹣2)2+7的顶点坐标是()A.(﹣2,7) B.(2,7) C.(﹣2,﹣7) D.(2,﹣7)【分析】根据二次函数的顶点式解析式写出即可.【解答】解:∵二次函数y=(x﹣2)2+7为顶点式,∴图象的顶点坐标是(2,7).故选:B.【点评】本题主要考查了二次函数的性质,掌握y=a(x﹣h)2+k的顶点坐标为(h,k)是解决问题的关键.2.(3分)从甲、乙、丙三名男生和A、B两名女生中随机选出一名学生参加问卷调查,则选出女生的可能性是()A. B. C. D.【分析】先求出学生的总数,再求出可能出现的情况,求出其比值即可.【解答】解:∵共有甲、乙、丙三名男生和A、B两名女生,∴随机选出一名学生参加问卷调查,则选出女生的可能性=.故选:B.【点评】本题考查的是概率公式,用到的知识点为:概率=所求情况数与总情况数之比.3.(3分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【解答】解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.【点评】此题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.4.(3分)关于反比例函数y=,下列说法中错误的是()A.它的图象分布在一、三象限 B.当x>0时,y的值随x的增大而减小 C.当x>﹣1时,y<﹣3 D.若点(a,b)在它的图象上,则(b,a)也在图象上【分析】直接利用反比例函数的性质:图象、增减性、图象上坐标特点,分别判断得出答案.【解答】解:A.关于反比例函数y=,它的图象分布在一、三象限,正确,不合题意;B.关于反比例函数y=,当x>0时,y的值随x的增大而减小,正确,不合题意;C.关于反比例函数y=,当0>x>﹣1时,y<﹣3,原说法错误,符合题意;D.关于反比例函数y=,若点(a,b)在它的图象上,则(b,a)也在图象上,正确,不合题意;故选:C.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题关键.5.(3分)如图,△ABC中,BD、CE是两条中线,则S△ADE:S△DEF=()A.2:1 B.4:1 C.3:1 D.5:2【分析】由题意可得DE为三角形的中位线,利用中位线定理得到DE∥BC,DE=BC,可得出△DEF∽△BCF,进而得到面积之比,且得到S△CDE=S△ADE,进而求出所求.【解答】解:∵在△ABC中,两条中线BD、CE相交于点F,∴DE为中位线,S△CDE=S△ADE,∴DE∥BC,DE=BC,∴△DEF∽△BCF,∴,∵CF=2EF,∴S△DEF=S△DCF,∴S△DEF=S△CDE,∴S△DEF=S△ADE,∴S△ADE:S△DEF=3:1.故选:C.【点评】此题考查了相似三角形的判定和性质,以及三角形面积,熟练掌握相似三角形的判定和性质定理是解本题的关键.6.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A. B. C. D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数的定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.二、耐心填一填(本大题共6小题,每小题3分,共18分)7.(3分)若,则的值为2.5.【分析】=+=+1;因为=,直接代入计算.【解答】解:∵=∴=+1=+1=2.5.故答案为2.5.【点评】解答本题不仅要会通分,还要将当做一个整体看待.8.(3分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为1.6m.【分析】根据同一时刻物高与影长成正比列式求解即可.【解答】解:设木竿PQ长为xm,依题意得=,解得x=1.6,答:木竿PQ长度为1.6m,故答案为:1.6m.【点评】本题考查了相似三角形的应用,在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.9.(3分)如图,在菱形ABCD中,点E是CD上一点,连接AE交对角线BD于点F,连接CF,若∠AED=50°,则∠BCF=50度.【分析】由“SAS”可证△ADF≌△CDF,可得∠DAF=∠DCF,由三角形内角和定理和平行线的性质可求解.【解答】解:方法1:∵四边形ABCD是菱形,∴AD=CD,AD∥BC,∠ADF=∠CDF,在△ADF和△CDF中,,∴△ADF≌△CDF(SAS),∴∠DAF=∠DCF,∵∠AED=50°,∴∠DAE+∠ADE=180°﹣50°=130°,∴∠ADE+∠DCF=130°,∵AD∥BC,∴∠ADE+∠BCD=180°,∴∠ADE+∠BCF+∠DCF=180°,∴∠BCF=180°﹣130°=50°,故答案为:50.方法2:∵四边形ABCD是菱形,∴BC=AB,∠CBF=∠ABF,AB∥CD,∴∠BAE=∠AED=50°,在△CBF和△ABF中,,∴△CBF≌△ABF(SAS),∴∠BCF=∠BAF=50°,故答案为:50°.【点评】本题考查了菱形的性质,全等三角形的判定和性质,三角形内角和定理等知识;熟练掌握菱形的性质,证明三角形全等是解题的关键.10.(3分)一元二次方程x2﹣4x+2=0的两根为x1,x2,则x12﹣4x1+2x1x2的值为2.【分析】根据根与系数的关系及一元二次方程的解可得出x12﹣4x1=﹣2、x1x2=2,将其代入x12﹣4x1+2x1x2中即可求出结论.【解答】解:∵一元二次方程x2﹣4x+2=0的两根为x1、x2,∴x12﹣4x1=﹣2,x1x2=2,∴x12﹣4x1+2x1x2=﹣2+2×2=2.故答案为:2.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.11.(3分)如图,A、B两点分别在反比例函数y=(x>0)和y=(x>0)的图象上,且AB∥x轴,C为x轴上任意一点,则△ABC的面积为1.【分析】根据反比例函数k的几何意义,得出S△ABC=S△ABO=S△BOM﹣S△AOM=2,进而得出12|k|﹣12=2,求解即可.【解答】解:如图,延长BA交y轴于点M,连接OA,OB,∵直线AB与x轴平行,∵S△AOM=1,S△BOM=2,∴S△ABC=S△ABO=S△BOM﹣S△AOM=2﹣1=1,故答案为:1.【点评】本题考查反比例函数图象上点的坐标特征,k的几何意义,理解反比例函数k的几何意义是解决问题的关键.12.(3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是5或4或5.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当1PE=AE=5时,求出BE,由勾股定理求出P1B,再由勾股定理求出等边AP1即可;③当P2A=P2E时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B==4,∴底边AP1==4;③当P2A=P2E时,底边AE=5;综上所述:等腰三角形AEP的底边长为5或4或5;故答案为:5或4或5.【点评】本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.三、细心做一做(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:2(x﹣1)=x(x﹣1);(2)计算:|﹣3|+4sin45°﹣tan60°.【分析】(1)先移项得到2(x﹣1)﹣x(x﹣1)=0,然后利用因式分解法解方程;(2)根据绝对值的意义和特殊角的三角函数值得到原式=3﹣2+4×﹣×,然后进行二次根式的混合运算.【解答】解:(1)2(x﹣1)﹣x(x﹣1)=0,(x﹣1)(2﹣x)=0,x﹣1=0或2﹣x=0,所以x1=1,x2=2;(2)原式=3﹣2+4×﹣×=3﹣2+2﹣3=0.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的运算.14.(6分)如图,已知平行四边形ABCD,若M,N是BD上两点,且BM=DN,AC=2MO.求证:四边形AMCN是矩形.【分析】由平行四边形的性质可得OA=OC,OB=OD,可得OM=ON,可证四边形AMCN是平行四边形,通过证明MN=AC,可得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵MO=NO,∴MN=2MO,∵AC=2MO,∴MN=AC,∴四边形AMCN是矩形.【点评】本题考查了矩形的判定,平行四边形的性质,掌握矩形的判定方法是解题的关键.15.(6分)已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.【分析】(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(2)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.【解答】(1)证明:∵x2﹣(m﹣3)x﹣m=0,∴Δ=[﹣(m﹣3)]2﹣4×1×(﹣m)=m2﹣2m+9=(m﹣1)2+8>0,∴方程有两个不相等的实数根;(2)∵x2﹣(m﹣3)x﹣m=0,方程的两实根为x1、x2,且x12+x22﹣x1x2=7,∴,∴(m﹣3)2﹣3×(﹣m)=7,解得,m1=1,m2=2,即m的值是1或2.【点评】本题考查根与系数的关系、根的判别式,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.16.(6分)如图,在所给的8×8方格纸中,每个小正方形的边长均相等,小正方形的顶点叫格点,点A,B均在格点上.请画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正形的顶点上).(1)在图1中画出一个以AB为边的矩形.(2)在图2中画出一个以AB为对角线的正方形.【分析】(1)根据矩形的定义画出图形即可;(2)根据正方形的定义画出图形即可.【解答】解:(1)如图1中,矩形ABCD即为所求;(2)如图2中,正方形AEBF即为所求.【点评】本题考查作图﹣应用与设计作图,矩形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.【分析】过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.【解答】解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.【点评】本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.四、沉着冷静,周密考虑(本大题共3小题,每小题8分,共24分)18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=4,AD=8,求AE的长.【分析】(1)根据矩形的性质得出AB∥CD,求出∠M=∠N,AO=CO,再根据全等三角形的判定定理AAS推出即可;(2)根据矩形的性质得出AB=CD=4,根据线段垂直平分线的性质得出AE=CE,再根据勾股定理求出即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠M=∠N,∵AC的垂直平分线是MN,∴AO=CO,在△AOM和△CON中,,∴△AOM≌△CON(AAS);(2)解:连接CE,设AE=x,则DE=8﹣x,∵AC的垂直平分线是MN,∴AE=CE=x,∵四边形ABCD是矩形,AB=4,∴DC=AB=4,∠ADC=90°,由勾股定理得:DE2+DC2=CE2,∴(8﹣x)2+42=x2,解得:x=5,即AE=5.【点评】本题考查了矩形的性质,线段垂直平分线的性质,全等三角形的判定等知识点,能熟记矩形的性质和线段垂直平分线的性质是解此题的关键.20.(8分)为助力泰和县“四城同创“(全国文明城市、全国卫生县城、国家森林城市、省级生态园林城市)工作深入开展,某校组织志愿者进行宣传活动.班主任陈老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,陈老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中“是不可能事件,“小悦被抽中“是随机事件(填“不可能“或“必然“或“随机“);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠和小艳被同时抽中“的概率.【分析】(1)根据随机事件和不可能事件的概念及概率公式即可得出答案;(2)列举出所有情况数,看所求的情况占总情况的多少即可.【解答】解:(1)该班男生“小刚被抽中“是不可能事件,“小悦被抽中“是随机事件;第一次抽取卡片“小悦被抽中”的概率为,故答案为:不可能,随机,;(2)记小悦、小惠、小艳和小倩这四位女同学分别为A、B、C、D,列表如下:ABCDA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中“小惠和小艳被同时抽中“的有2种结果,所以“小惠和小艳被同时抽中“的概率为=.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、开动脑筋,再接再厉(本大题共2小题,每小题9分,共18分)21.(9分)某商场经营某种品牌的玩具,购进的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具,(1)设该种品牌玩具的销售单价为x元,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于45元,且商场要完成不少于480件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出y与x之间的关系式;根据销售问题的利润=售价﹣进价就可以表示出w与x之间的关系;(2)根据题意得方程求得x1=50,x2=80,于是得到结论;(3)根据销售单价不低于45元且商场要完成不少于480件的销售任务求得45≤x≤52,根据二次函数的性质得到当45≤x≤52时,y随x增大而增大,于是得到结论.【解答】解:(1)y=600﹣10(x﹣40)=﹣10x+1000,w=(﹣10x+1000)(x﹣30)=﹣10x2+1300x﹣30000;(2)根据题意,得:﹣10x2+1300x﹣30000=10000,解得:x1=50,x2=80,答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)根据题意得,解得:45≤x≤52,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,对称轴x=65,∴当45≤x≤52时,y随x增大而增大.∴当x=52时,W最大值=10560(元),答:商场销售该品牌玩具获得的最大利润是10560元.【点评】本题考查了一元二次方程的解法的运用,二次函数的解析式的运用,二次函数的顶点式的运用,解答时求出二次函数的解析式是关键.22.(9分)如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论