




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市颍上第二中学2024-2025学年高考模拟金典卷数学试题(一)试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数fx=sinωx+π6+A.16,13 B.12.已知集合,,则集合的真子集的个数是()A.8 B.7 C.4 D.33.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A. B. C. D.4.已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为()A. B.4 C.2 D.5.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()6.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③7.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A. B. C. D.以上都不对8.已知函数则函数的图象的对称轴方程为()A. B.C. D.9.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.10.已知中内角所对应的边依次为,若,则的面积为()A. B. C. D.11.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为A. B. C. D.12.若集合,,则=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为________,离心率为________.14.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为____.15.函数的定义域为______.16.已知向量,满足,,,则向量在的夹角为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.18.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.19.(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?20.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,二面角为,求异面直线与所成角的余弦值.21.(12分)若,且(1)求的最小值;(2)是否存在,使得?并说明理由.22.(10分)记函数的最小值为.(1)求的值;(2)若正数,,满足,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
将fx整理为3sinωx+π3,根据x的范围可求得ωx+π3∈π【详解】f当x∈0,π时,又f0=3sin由fx在0,π上的值域为32解得:ω∈本题正确选项:A本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.2.D【解析】
转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,,集合的真子集的个数为个.故选:D.本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.3.C【解析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.4.A【解析】
由已知得,,由已知比值得,再利用双曲线的定义可用表示出,,用勾股定理得出的等式,从而得离心率.【详解】.又,可令,则.设,得,即,解得,∴,,由得,,,该双曲线的离心率.故选:A.本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系.5.B【解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.6.D【解析】
对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.7.A【解析】
首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,,,,,,,,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,,共种情况,故随机选出两个不同的数,其和等于的概率.故选:.本题考查古典概型概率问题的求解,属于基础题.8.C【解析】
,将看成一个整体,结合的对称性即可得到答案.【详解】由已知,,令,得.故选:C.本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.9.C【解析】
根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.10.A【解析】
由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【详解】由余弦定理,得,由,解得,所以,.故选:A.本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.11.C【解析】
将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.12.C【解析】试题分析:化简集合故选C.考点:集合的运算.二、填空题:本题共4小题,每小题5分,共20分。13.22【解析】
设双曲线的右焦点为,根据周长为,计算得到答案.【详解】设双曲线的右焦点为.周长为:.当共线时等号成立,故,即实轴长为,.故答案为:;.本题考查双曲线周长的最值问题,离心率,实轴长,意在考查学生的计算能力和转化能力.14.【解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。15.【解析】
对数函数的定义域需满足真数大于0,再由指数型不等式求解出解集即可.【详解】对函数有意义,即.故答案为:本题考查求对数函数的定义域,还考查了指数型不等式求解,属于基础题.16.【解析】
把平方利用数量积的运算化简即得解.【详解】因为,,,所以,∴,∴,因为所以.故答案为:本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2)证明见解析.【解析】
证明:(1)在矩形中,,又平面,平面,所以平面.(2)连结,交于点,连结,在矩形中,点为的中点,又,故,,又,平面,所以平面,又平面,所以平面平面.18.(1)元;(2)32家;(3)分布列见解析;【解析】
(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,,,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,,.,,所以的分布列为数学期望本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.19.(1)6种;(2);(3).【解析】
(1)从4条街中选择2条横街即可;(2)小明途中恰好经过处,共有4条路线,即,,,,分别对4条路线进行分析计算概率;(3)分别对小明上学的6条路线进行分析求均值,均值越大的应避免.【详解】(1)路途中可以看成必须走过2条横街和2条竖街,即从4条街中选择2条横街即可,所以路线总数为条.(2)小明途中恰好经过处,共有4条路线:①当走时,全程不等红绿灯的概率;②当走时,全程不等红绿灯的概率;③当走时,全程不等红绿灯的概率;④当走时,全程不等红绿灯的概率.所以途中恰好经过处,且全程不等信号灯的概率.(3)设以下第条的路线等信号灯的次数为变量,则①第一条:,则;②第二条:,则;③另外四条路线:;;,则综上,小明上学的最佳路线为;应尽量避开.本题考查概率在实际生活中的综合应用问题,考查学生逻辑推理与运算能力,是一道有一定难度的题.20.(1)证明见解析(2)【解析】
(1)取中点连接,得,可得,可证,可得,进而平面,即可证明结论;(2)设分别为边的中点,连,可得,,可得(或补角)是异面直线与所成的角,,可得,为二面角的平面角,即,设,求解,即可得出结论.【详解】(1)证明:取中点连接,由则,则,故,,平面,又平面,故平面平面(2)解法一:设分别为边的中点,则,(或补角)是异面直线与所成的角.设为边的中点,则,由知.又由(1)有平面,平面,所以为二面角的平面角,,设则在中,从而在中,,又,从而在中,因,,因此,异面直线与所成角的余弦值为.解法二:过点作交于点由(1)易知两两垂直,以为原点,射线分别为轴,轴,轴的正半轴,建立空间直角坐标系.不妨设,由,易知点的坐标分别为则显然向量是平面的法向量已知二面角为,设,则设平面的法向量为,则令,则由由上式整理得,解之得(舍)或,因此,异面直线与所成角的余弦值为.本题考查空间点、线、面位置关系,证明平面与平面垂直,考查空间角,涉及到二面角、异面直线所成的角,做出空间角对应的平面角是解题的关键,或用空间向量法求角,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.21.(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和积转化可求,利用基本不等式可将转化为,由不等式的传递性,可求的最小值;(2)由基本不等式可求的最小值为,而,故不存在.【详解】(1)由,得,且当时取等号.故,且当时取等号.所以的最小值为;(2)由(1)知,.由于,从而不存在,使得成立.【考点定位】基本不等式.22.(1)(2)证明见解析【解析】
(1)将函数转化为分段函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 值得关注的多媒体应用设计师试题及答案
- 幼儿园保育员考试题及答案
- 深入浅出针对软件评测师考试的试题及答案
- Msoffice在信息管理中的应用及实例试题及答案
- 未来网络规划设计师考试的发展方向试题及答案
- 初级社会工作者考试知识梳理试题及答案
- 2025合同自传范文参考合同范文
- 2025年PCB复配化学品项目申请报告
- 知识分享初级社会工作者试题及答案
- 2025金融科技产品经理任职协议
- 2023年高考真题-生物(辽宁卷) 含答案
- 叉车出租行业市场调研分析报告
- 专题02代数推理题(真题2个考点模拟16个考点)(原卷版+解析)
- 变压器维修投标方案
- 2025届山东师范大学附中高考适应性考试历史试卷含解析
- 四川省高职单招餐饮类《中式烹饪技艺》复习备考试题库-下(判断、简答题)
- DL∕T 5783-2019 水电水利地下工程地质超前预报技术规程
- SMP-04-022-00 共线生产管理规程
- 中考字音字形练习题(含答案)-字音字形专项训练
- 北京市西城区2023-2024学年七年级下学期期末考试数学试卷
- 2024年连云港市名小六年级毕业考试语文模拟试卷
评论
0/150
提交评论