版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南长沙市高三4月阶段性考试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.2.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个 B.个 C.个 D.个3.已知中,角、所对的边分别是,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分必要条件4.若向量,则()A.30 B.31 C.32 D.335.若直线经过抛物线的焦点,则()A. B. C.2 D.6.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A. B. C. D.7.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的()条件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要8.在等腰直角三角形中,,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为().A. B. C. D.9.已知复数满足,(为虚数单位),则()A. B. C. D.310.已知非零向量满足,,且与的夹角为,则()A.6 B. C. D.311.等比数列的前项和为,若,,,,则()A. B. C. D.12.复数满足为虚数单位),则的虚部为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则“”是“”的__________条件.14.若曲线(其中常数)在点处的切线的斜率为1,则________.15.设函数,当时,记最大值为,则的最小值为______.16.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的右焦点为,过点且斜率为的直线与椭圆交于两点,线段的中点为为坐标原点.(1)证明:点在轴的右侧;(2)设线段的垂直平分线与轴、轴分别相交于点.若与的面积相等,求直线的斜率18.(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.19.(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证:20.(12分)己知圆F1:(x+1)1+y1=r1(1≤r≤3),圆F1:(x-1)1+y1=(4-r)1.(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由.21.(12分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:月收入(单位:百元)频数51055频率0.10.20.10.1赞成人数4812521(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.22.(10分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。2.C【解析】
计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球.故选:本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.3.D【解析】
由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“”是“”的充分必要条件.故选:D.本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题.4.C【解析】
先求出,再与相乘即可求出答案.【详解】因为,所以.故选:C.本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.5.B【解析】
计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.本题考查了抛物线的焦点,属于简单题.6.C【解析】
根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;使用主要找人聊天的大学生人数为,因为,所以③正确.故选:C.本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.7.B【解析】
根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.8.D【解析】
如图,将四面体放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径.【详解】中,易知,翻折后,,,设外接圆的半径为,,,如图:易得平面,将四面体放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为,,四面体的外接球的表面积为.故选:D本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.9.A【解析】,故,故选A.10.D【解析】
利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【详解】解:非零向量,满足,可知两个向量垂直,,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.故选:.本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.11.D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,,所以,故解得:,从而公比;那么,故选D.考点:等比数列.12.C【解析】
,分子分母同乘以分母的共轭复数即可.【详解】由已知,,故的虚部为.故选:C.本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13.充分必要【解析】
根据充分条件和必要条件的定义可判断两者之间的条件关系.【详解】当时,有,故“”是“”的充分条件.当时,有,故“”是“”的必要条件.故“”是“”的充分必要条件,故答案为:充分必要.本题考查充分必要条件的判断,可利用定义来判断,也可以根据两个条件构成命题及逆命题的真假来判断,还可以利用两个条件对应的集合的包含关系来判断,本题属于容易题.14.【解析】
利用导数的几何意义,由解方程即可.【详解】由已知,,所以,解得.故答案为:.本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.15.【解析】
易知,设,,利用绝对值不等式的性质即可得解.【详解】,设,,令,当时,,所以单调递减令,当时,,所以单调递增所以当时,,,则则,即故答案为:.本题考查函数最值的求法,考查绝对值不等式的性质,考查转化思想及逻辑推理能力,属于难题.16.【解析】
先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.故答案为:.本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【解析】
(1)设出直线的方程,与椭圆方程联立,利用根与系数的关系求出点的横坐标即可证出;(2)根据线段的垂直平分线求出点的坐标,即可求出的面积,再表示出的面积,由与的面积相等列式,即可解出直线的斜率.【详解】(1)由题意,得,直线()设,,联立消去,得,显然,,则点的横坐标,因为,所以点在轴的右侧.(2)由(1)得点的纵坐标.即.所以线段的垂直平分线方程为:.令,得;令,得.所以的面积,的面积.因为与的面积相等,所以,解得.所以当与的面积相等时,直线的斜率.本题主要考查直线与椭圆的位置关系的应用、根与系数的关系应用,以及三角形的面积的计算,意在考查学生的数学运算能力,属于中档题.18.(1)证明见解析(2)【解析】
(1)由底面为菱形,得,再由底面,可得,结合线面垂直的判定可得平面;(2)以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.【详解】(1)证明:底面为菱形,,底面,平面,又,平面,平面;(2)解:,,为等边三角形,.底面,是直线与平面所成的角为,在中,由,解得.如图,以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系.则,,,,.,,,.设平面与平面的一个法向量分别为,.由,取,得;由,取,得..平面与平面所成锐二面角的余弦值为.本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,属于中档题.19.(1);(2)见解析.【解析】
(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可得证.【详解】(1)对任意恒成立等价于对任意恒成立,令,,则,当时,,单调递增;当时,,单调递减;有最大值,.(2)证明:由(1)知,当时,即,,,令,则,令,则,在上是增函数,又,当时,;当时,,在上是减函数,在上是增函数,,即,.本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.20.(1)见解析,(1)存在,【解析】
(1)求出圆和圆的圆心和半径,通过圆F1与圆F1有公共点求出的范围,从而根据可得点的轨迹,进而求出方程;(1)过点且斜率为的直线方程为,设,,联立直线方程和椭圆方程,根据韦达定理以及,,可得,根据其为定值,则有,进而可得结果.【详解】(1)因为,,所以,因为圆的半径为,圆的半径为,又因为,所以,即,所以圆与圆有公共点,设公共点为,因此,所以点的轨迹是以,为焦点的椭圆,所以,,,即轨迹的方程为;(1)过点且斜率为的直线方程为,设,由消去得到,则,,①因为,,所以,将①式代入整理得因为,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 埃莱尔-当洛综合征的临床护理
- JJF(陕) 111-2024 超声流量计在线校准规范
- 《教综合布线技术》课件
- 《保险家庭财产保险》课件
- 风险识别与评估技巧培训
- 培养创新思维的方法计划
- 深入分析行业趋势制定行动方案计划
- 2024-2025学年九年级数学人教版下册专题整合复习卷第28章 锐角三角函数整章测试(含答案)
- 杠杆基金合同三篇
- 拖拉机及农林牧渔用挂车相关行业投资方案
- 基于深度学习的人脸识别
- 2023学年完整公开课版体育道德
- 2024 执业医师定期考核真题库附答案1
- 家装设计毕业答辩
- 新能源汽车充电站竞争格局分析PPT
- GB/T 7036.1-2023充气轮胎内胎第1部分:汽车轮胎内胎
- 足疗培训课件
- 毛绒玩具行业创业计划书
- 电力检测项目计划书
- 《简易风筝的制作》课件
- 体验式家长会的实施与开展
评论
0/150
提交评论