第十章 §10.6 二项分布、超几何分布与正态分布-2025届高中数学大一轮复习练习_第1页
第十章 §10.6 二项分布、超几何分布与正态分布-2025届高中数学大一轮复习练习_第2页
第十章 §10.6 二项分布、超几何分布与正态分布-2025届高中数学大一轮复习练习_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、单项选择题1.设随机变量X~B(2,p),Y~B(4,p),若P(X=0)=eq\f(4,9),则D(Y)等于()A.eq\f(2,3)B.eq\f(4,3)C.eq\f(4,9)D.eq\f(8,9)2.(2023·福建名校联盟大联考)甲、乙两选手进行羽毛球单打比赛,如果每局比赛甲获胜的概率为eq\f(2,3),乙获胜的概率为eq\f(1,3),采用三局两胜制,则甲以2∶1获胜的概率为()A.eq\f(8,27)B.eq\f(4,27)C.eq\f(4,9)D.eq\f(2,9)3.(2023·枣庄模拟)某地区有20000名考生参加了高三第二次调研考试.经过数据分析,数学成绩X近似服从正态分布N(72,82),则数学成绩位于(80,88]的人数约为()参考数据:P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.A.455B.2718C.6346D.95454.已知5件产品中有2件次品,3件正品,检验员从中随机抽取2件进行检测,记取到的正品数为ξ,则均值E(ξ)为()A.eq\f(4,5)B.eq\f(9,10)C.1D.eq\f(6,5)5.32名业余棋手组队与甲、乙2名专业棋手进行车轮挑战赛,每名业余棋手随机选择一名专业棋手进行一盘比赛,每盘比赛结果相互独立,若获胜的业余棋手人数不少于10名,则业余棋手队获胜.已知每名业余棋手与甲比赛获胜的概率均为eq\f(1,3),每名业余棋手与乙比赛获胜的概率均为eq\f(1,4),若业余棋手队获胜,则选择与甲进行比赛的业余棋手人数至少为()A.24B.25C.26D.276.(2024·赤峰模拟)某商场推出一种抽奖活动:盒子中装有有奖券和无奖券共10张券,客户从中任意抽取2张,若至少抽中1张有奖券,则该客户中奖,否则不中奖.客户甲每天都参加1次抽奖活动,一个月(30天)下来,发现自己共中奖11次,根据这个结果,估计盒子中的有奖券有()A.1张B.2张C.3张D.4张二、多项选择题7.(2023·莆田模拟)“50米跑”是《国家学生体质健康标准》测试项目中的一项,某地区高三男生的“50米跑”测试成绩ξ(单位:秒)服从正态分布N(8,σ2),且P(ξ≤7)=0.2.从该地区高三男生的“50米跑”测试成绩中随机抽取3个,其中成绩在(7,9)的个数记为X,则()A.P(7<ξ<9)=0.8 B.E(X)=1.8C.E(ξ)>E(5X) D.P(X≥1)>0.98.(2023·汕头模拟)一个袋子有10个大小相同的球,其中有4个红球,6个黑球,试验一:从中随机地有放回摸出3个球,记取到红球的个数为X1,均值和方差分别为E(X1),D(X1);试验二:从中随机地无放回摸出3个球,记取到红球的个数为X2,均值和方差分别为E(X2),D(X2),则()A.E(X1)=E(X2) B.E(X1)>E(X2)C.D(X1)>D(X2) D.D(X1)<D(X2)三、填空题9.(2023·石家庄模拟)某市中学举办了一次“亚运知识知多少”的知识竞赛.参赛选手从7道题(4道多选题,3道单选题)中随机抽题进行作答,若某选手先随机抽取2道题,再随机抽取1道题,则最后抽取到的题为多选题的概率为________.10.(2023·唐山模拟)近年来,理财成为了一种趋势,老黄在今年买进某个理财产品.设该产品每个季度的收益率为X,且各个季度的收益之间互不影响,根据该产品的历史记录,可得P(X>0)=2P(X≤0).若老黄准备在持有该理财产品4个季度之后卖出.则至少有3个季度的收益为正值的概率为________.11.(2024·南开模拟)一个盒子中装有5个电子产品,其中有3个一等品,2个二等品,从中每次抽取1个产品.若抽取后不再放回,则抽取三次,第三次才取得一等品的概率为________;若抽取后再放回,共抽取10次,则平均取得一等品________次.12.(2023·聊城模拟)某市统计高中生身体素质的状况,规定身体素质指标值不小于60就认为身体素质合格.现从全市随机抽取100名高中生的身体素质指标值xi(i=1,2,3,…,100),经计算eq\i\su(i=1,100,x)i=7200,eq\i\su(i=1,100,x)eq\o\al(2,i)=100×(722+36).若该市高中生的身体素质指标值服从正态分布N(μ,σ2),则估计该市高中生身体素质的合格率为________.(用百分数作答,精确到0.1%)参考数据:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.四、解答题13.某家具城举办了一次家具有奖促销活动,消费每超过1万元(含1万元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状与大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到2个红球和1个白球,则打5折;若摸出2个红球和1个黑球,则打7折;若摸出1个白球2个黑球,则打9折,其余情况不打折.方案二:从装有10个形状与大小完全相同的小球(其中红球2个,黑球8个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减2000元.(1)若一位顾客消费了1万元,且选择抽奖方案一,试求该顾客享受7折优惠的概率;(2)若某顾客消费恰好满1万元,试从均值的角度比较该顾客选择哪一种抽奖方案更合算?14.某市为了传承发展中华优秀传统文化,组织该市中学生进行了一次文化知识有奖竞赛,竞赛类奖励规则如下:得分在[70,80)内的学生获得三等奖,得分在[80,90)内的学生获得二等奖,得分在[90,100]内的学生获得一等奖,其他学生不得奖.为了解学生对相关知识的掌握情况,该市随机抽取100名学生的竞赛成绩,并以此为样本绘制了样本频率分布直方图,如图所示.若该市所有参赛学生的成绩X近似服从正态分布N(μ,σ2),其中σ≈15,μ为样本平均数的估计值,利用所得正态分布模型解决以下问题:(1)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生人数(结果四舍五入到整数);(2)若从所有参赛学生中(参赛学生数大于100

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论