版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年陕西省榆林市第二中学高三1月份统一考试(数学试题文)试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知f(x)=是定义在R上的奇函数,则不等式f(x-3)<f(9-x2)的解集为()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)2.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若平面向量,满足,则的最大值为()A. B. C. D.4.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.5.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()A.3个 B.4个 C.5个 D.6个6.已知等差数列的前项和为,若,则等差数列公差()A.2 B. C.3 D.47.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.8.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-9.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.10.若实数满足不等式组则的最小值等于()A. B. C. D.11.天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为()A. B. C. D.12.若,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线交于点,则长度的最大值为____.14.若函数,则__________;__________.15.已知为椭圆上的一个动点,,,设直线和分别与直线交于,两点,若与的面积相等,则线段的长为______.16.的展开式中的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)当x>0时,若函数g(x)(a>0)的最小值恒大于f(x),求实数a的取值范围.18.(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:(ⅰ)对任意的;(ⅱ)对任意的,,且.①若,求数列是等比数列的充要条件.②求证:数列是等比数列,其中.19.(12分)如图,三棱锥中,(1)证明:面面;(2)求二面角的余弦值.20.(12分)如图,四边形是边长为3的菱形,平面.(1)求证:平面;(2)若与平面所成角为,求二面角的正弦值.21.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.22.(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.2.D【解析】
设,整理得到方程组,解方程组即可解决问题.【详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点为,此点位于第四象限.故选D本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题.3.C【解析】
可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,,,故选:C本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.4.C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.5.A【解析】试题分析:,,所以,即集合中共有3个元素,故选A.考点:集合的运算.6.C【解析】
根据等差数列的求和公式即可得出.【详解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故选C.本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.7.D【解析】
根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.8.C【解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.9.D【解析】
利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.10.A【解析】
首先画出可行域,利用目标函数的几何意义求的最小值.【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以.故选:A.本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.11.B【解析】
利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【详解】20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.故选:B.本小题主要考查古典概型的计算,考查组合数的计算,考查学生分析问题的能力,难度较易.12.C【解析】
根据,再根据二项式的通项公式进行求解即可.【详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据题意可知,直线与直线分别过定点,且这两条直线互相垂直,由此可知,其交点在以为直径的圆上,结合图形求出线段的最大值即可.【详解】由题可知,直线可化为,所以其过定点,直线可化为,所以其过定点,且满足,所以直线与直线互相垂直,其交点在以为直径的圆上,作图如下:结合图形可知,线段的最大值为,因为为线段的中点,所以由中点坐标公式可得,所以线段的最大值为.故答案为:本题考查过交点的直线系方程、动点的轨迹问题及点与圆的位置关系;考查数形结合思想和运算求解能力;根据圆的定义得到交点在以为直径的圆上是求解本题的关键;属于中档题.14.01【解析】
根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.本题考查了分段函数求值的简单应用,属于基础题.15.【解析】
先设点坐标,由三角形面积相等得出两个三角形的边之间的比例关系,这个比例关系又可用线段上点的坐标表示出来,从而可求得点的横坐标,代入椭圆方程得纵坐标,然后可得.【详解】如图,设,,,由,得,由得,∴,解得,又在椭圆上,∴,,∴.故答案为:.本题考查直线与椭圆相交问题,解题时由三角形面积相等得出线段长的比例关系,解题是由把线段长的比例关系用点的横坐标表示.16.80.【解析】
只需找到展开式中的项的系数即可.【详解】展开式的通项为,令,则,故的展开式中的系数为80.故答案为:80.本题考查二项式定理的应用,涉及到展开式中的特殊项系数,考查学生的计算能力,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ);(Ⅱ)。【解析】
(Ⅰ)分类讨论,去掉绝对值,求得原绝对值不等式的解集;(Ⅱ)由条件利用基本不等式求得,,再由,求得的范围.【详解】(Ⅰ)当时,原不等式可化为,此时不成立;当时,原不等式可化为,解得,即;当时,原不等式可化为,解得.综上,原不等式的解集是.(Ⅱ)因为,当且仅当时等号成立,所以.当时,,所以.所以,解得,故实数的取值范围为.本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.18.(1);(2)①;②证明见解析.【解析】
(1)由条件可得,结合等差数列的定义和通项公式、求和公式,即可得到所求;(2)①若,可令,运用已知条件和等比数列的性质,即可得到所求充要条件;②当,,,由等比数列的定义和不等式的性质,化简变形,即可得到所求结论.【详解】解:(1),,且为非零常数,,,可得,可得数列的首项为,公差为的等差数列,可得,前项和为;(2)①若,可令,,且,即,,,,对任意的,,可得,可得,,数列是等比数列,则,,可得,,即,又,即有,即,数列是等比数列的充要条件为;②证明:对任意的,,,,,当,,,可得,即以为首项、为公比的等比数列;同理可得以为首项、为公比的等比数列;对任意的,,可得,即有,所以对,,,可得,,即且,则,可令,故数列,,,,,,,,,是以为首项,为公比的等比数列,其中.本题考查新定义的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法和推理、运算能力,属于难题.19.(1)证明见解析(2)【解析】
(1)取中点,连结,证明平面得到答案.(2)如图所示,建立空间直角坐标系,为平面的一个法向量,平面的一个法向量为,计算夹角得到答案.【详解】(1)取中点,连结,,,,,为直角,,平面,平面,∴面面.(2)如图所示,建立空间直角坐标系,则,可取为平面的一个法向量.设平面的一个法向量为.则,其中,,不妨取,则..为锐二面角,∴二面角的余弦值为.本题考查了面面垂直,二面角,意在考查学生的计算能力和空间想象能力.20.(1)证明见解析(2)【解析】
(1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直;(2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,由已知线面垂直知与平面所成角为,这样可计算出的长,写出各点坐标,求出平面的法向量,由法向量夹角可得二面角.【详解】证明:(1)因为平面,平面,所以.因为四边形是菱形,所以.又因为,平面,平面,所以平面.解:(2)据题设知,两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,因为与平面所成角为,即,所以又,所以,所以所以设平面的一个法向量,则令,则.因为平面,所以为平面的一个法向量,且所以,.所以二面角的正弦值为.本题考查线面垂直的判定定理和性质定理,考查用向量法求二面角.立体几何中求空间角常常是建立空间直角坐标系,用空间向量法求空间角,这样可减少思维量,把问题转化为计算.21.(1)证明见解析(2)【解析】
(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2)建立空间直角坐标系,求得半平面的法向量:,然后利用空间向量的相关结论可求得二面角的余弦值.【详解】(1)取中点R,连接,,则在中,,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交于点G,以E为原点,,,分别为x,y,x轴,建立如图所示的空间直角坐标系,则各点坐标为,,,所以,,设平面的一个法向量为,则即,取,得,又平面的一个法向量为,所以.因此,二面角的余弦值为本题考查线面平行的判定,考查利用空间向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年协作经营咖啡馆合同书
- 2024年变压器行业市场调研合同
- 2024年企业间新能源汽车充电设施建设合同
- 2024年劳务分包:涂装工程专业施工合同
- 2024年劳动合同(含派遣)
- 2024年危废处理工程合同专业范本
- (2024版)一带一路基础设施建设合同
- 2024年全球纺织品进出口合同
- (2024版)技术开发与转让合同
- 2024年信息技术项目分包实施合同
- 电气工程及其自动化职业规划课件
- 人教版2024七年级上册英语各单元单词短语句型汇编
- 2024年人教版九年级英语单词默写单(微调版)
- 22G101三维彩色立体图集
- 人教版小学英语单词表(完整版)
- 【川教版】《生命 生态 安全》四上第11课《预防流感》课件
- 师生申诉调解机制
- 趣味数学—数阵图与幻方
- 网格化管理架构图新
- 石油修井行业套损井检测与修复技术
- 座椅设计参数及其对舒适性的影响
评论
0/150
提交评论