




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为()A. B. C. D.2.已知,则()A. B. C. D.3.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知满足,则的取值范围为()A. B. C. D.5.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为()A. B. C. D.6.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.7.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.8.已知倾斜角为的直线与直线垂直,则()A. B. C. D.9.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.10.已知变量,满足不等式组,则的最小值为()A. B. C. D.11.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变12.函数的图象大致是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,若,则________.14.若且时,不等式恒成立,则实数a的取值范围为________.15.函数f(x)=x2﹣xlnx的图象在x=1处的切线方程为_____.16.在平面直角坐标系中,已知圆及点,设点是圆上的动点,在中,若的角平分线与相交于点,则的取值范围是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.18.(12分)已知函数,.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)求函数在上的最小值;(Ⅲ)若函数,当时,的最大值为,求证:.19.(12分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A、B+、B、C+、C、D+、D、E共8个等级。参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科C+等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属C+等级.而C+等级的转换分区间为61~70,那么该同学化学学科的转换分为:设该同学化学科的转换等级分为x,69-6565-58=70-x四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布ξ∼N(60,12(i)若小明同学在这次考试中物理原始分为84分,等级为B+,其所在原始分分布区间为82~93,求小明转换后的物理成绩;(ii)求物理原始分在区间(72,84)的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记X表示这4人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.(附:若随机变量ξ∼N(μ,σ2),则Pμ-σ<ξ<μ+σ=0.68220.(12分)已知圆:和抛物线:,为坐标原点.(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.21.(12分)如图,四棱锥中,平面,,,.(I)证明:;(Ⅱ)若是中点,与平面所成的角的正弦值为,求的长.22.(10分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,所以的最小值为1,故选:B.【点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.2.C【解析】
利用诱导公式得,,再利用倍角公式,即可得答案.【详解】由可得,∴,∴.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.3.A【解析】
作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.4.C【解析】
设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.5.A【解析】
设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【点睛】本题考查三角形面积公式的应用,考查阅读分析能力.6.A【解析】
依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.7.B【解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.8.D【解析】
倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.9.B【解析】
设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.10.B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.11.D【解析】
由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题12.A【解析】
根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】
由题意先求得的值,可得,再令,可得结论.【详解】已知,,,,令,可得,故答案为:1.【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的赋值,求展开式的系数和,可以简便的求出答案,属于基础题.14.【解析】
将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.【详解】因为,所以,所以,所以,所以或,当时,对且不成立,当时,取,显然不满足,所以,所以,解得;当时,取,显然不满足,所以,所以,解得,综上可得的取值范围是:.故答案为:.【点睛】本题考查根据不等式恒成立求解参数范围,难度较难.根据不等式恒成立求解参数范围的两种常用方法:(1)分类讨论法:分析参数的临界值,对参数分类讨论;(2)参变分离法:将参数单独分离出来,再以函数的最值与参数的大小关系求解出参数范围.15.x﹣y=0.【解析】
先将x=1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利用点斜式写出切线方程.【详解】由题意得.故切线方程为y﹣1=x﹣1,即x﹣y=0.故答案为:x﹣y=0.【点睛】本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题.16.【解析】
由角平分线成比例定理推理可得,进而设点表示向量构建方程组表示点P坐标,代入圆C方程即可表示动点Q的轨迹方程,再由将所求视为该圆上的点与原点间的距离,所以其最值为圆心到原点的距离加减半径.【详解】由题可构建如图所示的图形,因为AQ是的角平分线,由角平分线成比例定理可知,所以.设点,点,即,则,所以.又因为点是圆上的动点,则,故点Q的运功轨迹是以为圆心为半径的圆,又即为该圆上的点与原点间的距离,因为,所以故答案为:【点睛】本题考查与圆有关的距离的最值问题,常常转化到圆心的距离加减半径,还考查了求动点的轨迹方程,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)见解析【解析】(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连结NE.则N,E(0,0,1),A(,,0),M.∴=,=.∴=且NE与AM不共线.∴NE∥AM.∵NE平面BDE,AM平面BDE,∴AM∥平面BDE.(2)由(1)知=,∵D(,0,0),F(,,1),∴=(0,,1),∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.18.(Ⅰ)(Ⅱ)见解析;(Ⅲ)见解析.【解析】试题分析:(Ⅰ)由题,所以故,,代入点斜式可得曲线在处的切线方程;(Ⅱ)由题(1)当时,在上单调递增.则函数在上的最小值是(2)当时,令,即,令,即(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,由的单调性可得在上的最小值是(iii)当,即时,在上单调递减,在上的最小值是(Ⅲ)当时,令,则是单调递减函数.因为,,所以在上存在,使得,即讨论可得在上单调递增,在上单调递减.所以当时,取得最大值是因为,所以由此可证试题解析:(Ⅰ)因为函数,且,所以,所以所以,所以曲线在处的切线方程是,即(Ⅱ)因为函数,所以(1)当时,,所以在上单调递增.所以函数在上的最小值是(2)当时,令,即,所以令,即,所以(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,在上单调递减,在上单调递增,所以在上的最小值是(iii)当,即时,在上单调递减,所以在上的最小值是综上所述,当时,在上的最小值是当时,在上的最小值是当时,在上的最小值是(Ⅲ)因为函数,所以所以当时,令,所以是单调递减函数.因为,,所以在上存在,使得,即所以当时,;当时,即当时,;当时,所以在上单调递增,在上单调递减.所以当时,取得最大值是因为,所以因为,所以所以19.(1)(i)83.;(ii)272.(2)见解析.【解析】
(1)根据原始分数分布区间及转换分区间,结合所给示例,即可求得小明转换后的物理成绩;根据正态分布满足N60,122(2)根据各等级人数所占比例可知在区间61,80内的概率为25,由二项分布即可求得X【详解】(1)(i)设小明转换后的物理等级分为x,93-8484-82求得x≈82.64.小明转换后的物理成绩为83分;(ii)因为物理考试原始分基本服从正态分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在区间72,84的人数为2000×0.136=272(人);(2)由题意得,随机抽取1人,其等级成绩在区间61,80内的概率为25随机抽取4人,则X~B4,PX=0=3PX=2=CPX=4X的分布列为X01234P812162169616数学期望EX【点睛】本题考查了统计的综合应用,正态分布下求某区间概率的方法,分布列及数学期望的求法,文字多,数据多,需要细心的分析和理解,属于中档题。20.(1);(2)或.【解析】试题分析:直线与圆相切只需圆心到直线的距离等于圆的半径,直线与曲线相交于两点,且满足,只需数量积为0,要联立方程组设而不求,利用坐标关系及根与系数关系解题,这是解析几何常用解题方法,第二步利用直线的斜率找出坐标满足的要求,再利用两直线与圆相切,求出点的坐标.试题解析:(1)解:设,,,由和圆相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).当时,,故直线的方程为.(2)设,,,则.∴.设,由直线和圆相切,得,即.设,同理可得:.故是方程的两根,故.由得,故.同理,则,即.∴,解或.当时,;当时,.故或.21.(Ⅰ)见解析;(Ⅱ)【解析】
(Ⅰ)取的中点,连接,由,,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班食物安全课件
- 相似形中考试题及答案
- 写作社区考试题及答案
- 大学官网考试题目及答案
- 工程结构试题及答案
- 年产20亿只复合膜包装物及新型软包装材料项目可行性研究报告写作模板-备案审批
- 医疗技术进步对师资培训的新要求
- 团队建设中的教育心理学应用研究
- 教育领导力发展的心得体会
- 鄂教版小学科学教育计划
- 《义务教育数学课程标准(2022年版)》初中内容解读
- 气压传动课件 项目八任务一 公共汽车门气压传动系统
- 制鞋业鞋类产品设计与生产流程规范
- DB42-T 2275-2024 消防给水设施物联网系统技术标准
- Unit4Friendsforever短文巧记单词学习任务单高中英语
- 2024年春七年级地理下册 第8章 第三节 俄罗斯教案 (新版)湘教版
- 1旅游概述《旅游学概论》省公开课一等奖全国示范课微课金奖课件
- DL∕T 5390-2014 发电厂和变电站照明设计技术规定
- 2024-2030年电影放映机行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 日内高频交易策略研究
- 2024年长沙市中考数学真题试卷及答案
评论
0/150
提交评论