版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级数学上册第五章一元一次方程单元测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=42、已知a为正整数,且关于x的一元一次方程ax﹣14=x+7的解为整数,则满足条件的所有a的值之和为()A.36 B.10 C.8 D.43、若关于x的方程3x+2k-4=0的解是x=-2,则k的值是(
)A.5 B.2 C.﹣2 D.﹣54、解一元一次方程时,去分母正确的是(
)A. B.C. D.5、甲数是2019,甲数比乙数的还多1,设乙数为x,则可列方程为(
)A. B. C. D.6、下列变形正确的是(
)A.由5x=2,得 B.由5-(x+1)=0,得5-x=-1C.由3x=7x,得3=7 D.由,得7、一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为(
)A.6场 B.7场 C.8场 D.9场8、已知是方程的解,则的值是(
)A.5 B. C. D.109、已知等式,则下列等式中不成立的是()A. B.C. D.10、下列方程中,解是的方程是(
)A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、若,则关于的方程的解为______.2、如图,点在数轴上,它们所对应的数分别是和,且满足,则x的值为________.3、定义新运算:对于任意有理数a、b都有a⊗b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2﹣5)+1=2×(﹣3)+1=-6+1=-5.则4⊗x=13,则x=_____.4、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低a元后,再打八折,现售价为b元,那么该电脑的原售价为________元.5、为迎接一年一度的“春节”的到来,綦江区某水果店推出了A、B、C三类礼包,已知这三类礼包均由苹果、芒果、草莓三种水果搭配而成,每袋礼包的成本均为苹果、芒果、草莓三种水果成本之和.每袋A类礼包有5斤苹果、2斤芒果、8斤草莓;每袋C类礼包有7斤苹果、1斤芒果、4斤草莓.已知每袋A的成本是该袋中苹果成本的3倍,利润率为30%,每袋B的成本是其售价的,利润是每袋A利润的;每袋C礼包利润率为25%.若该店12月12日当天销售A、B、C三种礼包袋数之比为2:1:5,则当天该水果店销售总利润率为_______.三、解答题(5小题,每小题10分,共计50分)1、已知某数的与的差是的倒数,求这个数.2、如图,,为其内部一条射线.(1)若平分,平分.求的度数;(2)若,射线从起绕着点顺时针旋转,旋转的速度是每秒钟,设旋转的时间为,试求当时的值.3、某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底?(2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?4、在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:如图,点A表示的数为,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1.那么点C是【A,B】的和谐点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?5、如图一,已知数轴上,点表示的数为,点表示的数为,动点从出发,以个单位每秒的速度沿射线的方向向右运动,运动时间为秒(1)线段__________.(2)当点运动到的延长线时_________.(用含的代数式表示)(3)如图二,当秒时,点是的中点,点是的中点,求此时的长度.(4)当点从出发时,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,①点表示的数为:_________(用含的代数式表示),点表示的数为:__________(用含的代数式表示).②存在这样的值,使、、三点有一点恰好是以另外两点为端点的线段的中点,请直接写出值.______________.-参考答案-一、单选题1、B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【考点】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.2、A【解析】【分析】根据题意可知,解原方程可得,再由“方程解为整数”,即可求出a的值,最后再由a为正整数即可求出满足条件的所有a的值的和.【详解】解:,移项得:,合并同类项得:,若a=1,则原方程可整理得:-14=7(无意义,舍去),若a≠1,则,∵解为整数,∴x=1或-1或3或-3或7或-7或21或-21,则a-1=21或-21或7或-7或3或-3或1或-1,解得:a=22或-20或8或-6或4或-2或2或0,又∵a为正整数,∴a=22或8或4或2,∴满足条件的所有a的值的和=22+8+4+2=36,故选:A.【考点】本题考查一元一次方程的解,正确掌握一元一次方程的解法是解答本题的关键.3、A【解析】【分析】根据一元一次方程的解的定义计算即可.【详解】解:∵关于x的方程3x+2k-4=0的解是x=-2,∴-6+2k-4=0,解得,k=5,故选:A.【考点】本题考查的是一元一次方程的解,解题的关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.4、D【解析】【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.【考点】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.5、C【解析】【分析】根据甲数比乙数的还多1,列方程即可.【详解】解:设乙数为x,根据甲数比乙数的还多1,可知甲数是,则故选:C.【考点】本题考查列一元一次方程,是重要考点,掌握相关知识是解题关键.6、D【解析】【分析】根据等式的基本性质,逐项判断即可.【详解】解:∵5x=2,∴,∴选项A不符合题意;∵5﹣(x+1)=0,∴5﹣x﹣1=0,∴5﹣x=1,∴选项B不符合题意;∵在等式的左右两边要同时除以一个不为零的数,所得等式仍然成立,而3x=7x中的x是否为零不能确定,∴3=7不成立,∴选项C不符合题意;∵,∴,∴,∴选项D符合题意.故选:D.【考点】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7、A【解析】【分析】设该队前9场比赛共平了x场,则胜了(9-x)场.根据共得21分列方程求解.【详解】解:设该队前9场比赛共平了x场,则胜了(9-x)场.根据题意得:3(9-x)+x=21,解得:x=3.9-x=6.答:该队前9场比赛共胜了6场.故选:A.【考点】本题考查了一元一次方程的应用,解题的关键是根据题意找到等量关系并正确的列出方程.8、B【解析】【分析】先将代入已知方程中得出等式,最后再化简后面的整式即可计算出结果.【详解】是方程的解,,整理得.故选:B.【考点】本题主要考查整式的运算,属于基础题,难度一般,熟练掌握整式的运算法则是解题的关键.9、C【解析】【分析】由,再利用等式的基本性质逐一分析各选项,即可得到答案.【详解】解:,故不符合题意;,故不符合题意;,故符合题意;,,故不符合题意;故选:【考点】本题考查的是等式的基本性质,掌握等式的基本性质是解题的关键.10、D【解析】【分析】使方程左右两边相等的未知数的值是方程的解.把x=3代入以上各个方程进行检验,可得到正确答案.【详解】解:对于A,x=3代入方程,左边=18,右边=20,左边≠右边,故此选项不符合题意;对于B,x=3代入方程,左边=5,右边=4,左边≠右边,故此选项不符合题意;对于C,x=3代入方程,左边=0,右边=3,左边≠右边,故此选项不符合题意;对于D,x=3代入方程,左边=50,右边=50,左边=右边,故此选项符合题意;故选:D.【考点】本题考查了一元一次方程的解,解题的关键是根据方程的解的定义.使方程左右两边的值相等的未知数的值是该方程的解.二、填空题1、1【解析】【分析】根据非负数的性质求出m、n的值,代入后解方程即可.【详解】解:∵,∴解得,,代入得,,解方程得,故答案为:1.【考点】本题考查了非负数的性质和解方程,解题关键是熟练运用非负数的性质求出m、n的值,代入后准确地解方程.2、2【解析】【分析】由且在原点的两侧,可知和互为相反数,据此可列出方程,再求解.【详解】解:点在数轴原点两侧,它们所对应的数分别是和,且满足,和互为相反数;解得:故答案为:2.【考点】本题考查数轴及方程的应用,解题关键是要读懂题目的意思,找出等量关键,利用相反数的和为0这一等量关系,列出方程,再求解.3、1【解析】【详解】解:根据题意得:4(4﹣x)+1=13,去括号得:16﹣4x+1=13,移项合并得:4x=4,解得:x=1.故答案为1.4、(b+a)【解析】【分析】用一元一次方程求解,用现售价为b元作为相等关系,列方程解出即可.【详解】解:设电脑的原售价为x元,则0.8(x-a)=b,解得x=b+a.故该电脑的原售价为(b+a)元.故答案为:(b+a).【考点】考查了列代数式,当题中数量关系较为复杂时,利用一元一次方程作为模型解题不失为一种好的方法,思路清晰简单,避免了思维混乱而出现的错误.5、26%【解析】【分析】根据利润率和成本、销售之间的关系式利润率=×100%可设苹果、芒果、草莓三种水果成本x、y、z,可用x表示A的成本为5x×3=15x,利润15x×30%=4.5x,售价为19.5x.B的利润为4.5x×=2x,售价为12x,成本为10x.同理可求出C的成本12x,售价为15x.再根据三种礼包销售量求出总的销售额,最后求出总利润率.【详解】解:设苹果、芒果、草莓三种水果的成本分别为x、y、z,则5x+2y+8z=3×5x.∵每袋A的成本是15x,利润率为30%,∴每袋A的利润为4.5x,售价为15x(1+30%)=19.5x,∵每袋B的成本是其售价的,利润是每袋A利润的,∴B的利润为4.5x×=2x,售价为12x,成本为10x.∵每袋C礼包利润率为25%,成本为7x+y+4z=12x,∴C的售价为15x.∵A、B、C三种礼包袋数之比为2:1:5,∴;故答案为:26%.【考点】此题考查的是用未知数表示各个参数,掌握售价、成本、利润之间的关系即可解出此题.三、解答题1、这个数是【解析】【分析】设这个数是x,根据题意得:,解方程即可.【详解】解:设这个为.根据题意得:,∴.所以,这个数为【考点】本题考查了倒数,解一元一次方程,根据题意列出方程是解题的关键.2、∴当t=1时,点P表示的数为23-4×1=1(2)当运动时间为t秒时,点P表示的数为23-4t,点Q表示的数为3t-1,依题意,得:|23-4t-(3t-1)|=3,即24-7t=3或7t-24=3,解得:t=3或t=.答:当t为3或时,点P与点Q相距3个单位长度.【考点】本题考查了数轴和一元一次方程的应用.用到的知识点是数轴上两点之间的距离,关键是根据题意找出等量关系,列出等式.9.(1);(2)或,【解析】【分析】(1)根据角平分线定义和角的和差计算即可;(2)分四种情况讨论:①当OM在∠AOC内部时,②当OM在∠BOC内部时,③当OM在∠AOB外部,靠近射线OB时,④当OM在∠AOB外部,靠近射线OA时.分别列方程求解即可.【详解】(1)∵OE平分∠AOC,OF平分∠BOC,∴∠1=∠AOC,∠2=∠BOC,∴∠EOF=∠1+∠2=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB.∵∠AOB=160°,∴∠EOF=80°.(2)分四种情况讨论:①当OM在∠AOC内部时,如图1.∵∠AOC=100°,∠AOB=160°,∴∠MOB=∠AOB-∠AOM=160°-.∵∠AOM+∠MOC+∠MOB=∠AOC+∠MOB=200°,∴100°+160°-=200°,∴t=3.②当OM在∠BOC内部时,如图2.∵∠AOC=100°,∠AOB=160°,∴∠BOC=∠AOB-∠AOC=160°-100°=60°.∵∠AOM+∠MOC+∠MOB=∠AOM+∠COB=200°,∴,∴t=7.③当OM在∠AOB外部,靠近射线OB时,如图3,∵∠AOB=160°,∠AOC=100°,∴∠BOC=160°-100°=60°.∵∠AOM=,∴∠MOB=∠AOM-∠AOB=,∠MOC=.∵∠AOM+∠MOC+∠MOB=200°,∴,解得:t=.∵∠AOB=160°,∴OM转到OB时,所用时间t=160°÷20°=8.∵<8,∴此时OM在∠BOC内部,不合题意,舍去.④当OM在∠AOB外部,靠近射线OA时,如图4,∵∠AOB=160°,∠AOC=100°,∴∠BOC=160°-100°=60°.∵,∴∠MOC=∠AOM+∠AOC==,∠MOB=∠AOM+∠AOB==.∵∠AOM+∠MOC+∠MOB=200°,∴,解得:t=19.当t=19时,=380°>360°,则OM转到了∠AOC的内部,不合题意,舍去.综上所述:t=3s或t=7s.【考点】本题考查了角的和差和一元一次方程的应用.用含t的式子表示出对应的角是解答本题的关键.3、(1)80个(2)15张(3)6张;9张【解析】【分析】(1)列方程求解即可得到结果;(2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a张做瓶身,取张做瓶底可使配套做成的饮料瓶最多,代入值计算即可;【详解】解:(1)设一张这样的铝片可做x个瓶底.根据题意,得.解得..答:一张这样的铝片可做80个瓶底.(2)(张)答:这些铝片一共有15张.(3)设从这15张铝片中取a张做瓶身,取张做瓶底可使配套做成的饮料瓶最多.根据题意,得.解得.则.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多.【考点】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.4、(1)①是,②0,-16;(2)点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.【解析】【分析】(1)①根据定义,可知点C是【A,B】的和谐点;②根据定义,讨论点C在线段AB上和在点A左侧的情况;(2)分C是【A,B】的和谐点、C是【B,A】的和谐点、A是【B,C】的和谐点、B是【A,C】的和谐点四种情况讨论,列出对应方程解答.【详解】(1)①是;②0,-16
(2)设运动时间为t秒,则,依题意,得C是【A,B】的和谐点
,;C是【B,A】的和谐点
,;A是【B,C】的和谐点
,
;B是【A,C】的和谐点
,;答:点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.【考点】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解和谐点的定义,找出合适的等量关系列出方程,再求解.5、(1)(2)(3)(4)①;
②秒或秒或秒【解析】【分析】(1)由数轴上两点间的距离的定义求解即可,数轴上两点间的距离等于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑物给排水安全合同
- 野营基地建设合同进度跟踪
- 公共设施维护招标实施细则
- 物流信贷证明业务
- 保定市河道水利工程规划
- 婚礼场地租赁合同违约
- 网络优化技术人员聘用合同
- 室内装修施工图深化合作协议
- 商业街区绿化施工合同
- 2025年度食品加工行业VOC排放监测合同2篇
- 泉州市2024届高中毕业班适应性练习卷(四检) 政治试卷(标准含答案)
- 接触网设备故障应急处理
- N120超重型动力触探
- 2022年1月自考00850广告设计基础试题及答案含解析
- 娱乐演艺居间合同协议书范本
- 24春国家开放大学《农业推广》调查报告参考答案
- 70岁以上老人考驾照,“三力”测试题库及答案
- 焊接技术实用手册
- 腰椎射频术后护理
- 食堂安全用电知识培训课件
- 福建省厦门市2023-2024学年高二上学期期末考试语文试题(解析版)
评论
0/150
提交评论