版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为()A.1010.1 B.10.1 C.lg10.1 D.10–10.12.在中,,,,点,分别在线段,上,且,,则().A. B. C.4 D.93.在中,,,,若,则实数()A. B. C. D.4.在直三棱柱中,己知,,,则异面直线与所成的角为()A. B. C. D.5.设等比数列的前项和为,若,则的值为()A. B. C. D.6.下列说法正确的是()A.“若,则”的否命题是“若,则”B.在中,“”是“”成立的必要不充分条件C.“若,则”是真命题D.存在,使得成立7.的内角的对边分别为,若,则内角()A. B. C. D.8.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种9.若,则下列不等式不能成立的是()A. B. C. D.10.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.11.已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.12.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知,,为的中点,为以为直径的圆上一动点,则的最小值是_____.14.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.15.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.16.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述:①平面;②四点、、、可能共面;③若,则平面平面;④平面与平面可能垂直.其中正确的是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.18.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点.(Ⅰ)证明:面;(Ⅱ)若,求二面角的余弦值.19.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.20.(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.21.(12分)如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.22.(10分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.2.B【解析】
根据题意,分析可得,由余弦定理求得的值,由可得结果.【详解】根据题意,,则在中,又,则则则则故选:B【点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.3.D【解析】
将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.4.C【解析】
由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.5.C【解析】
求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【详解】设等比数列的公比为,,,,因此,.故选:C.【点睛】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.6.C【解析】
A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错.C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故A错.B:在中,,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.7.C【解析】
由正弦定理化边为角,由三角函数恒等变换可得.【详解】∵,由正弦定理可得,∴,三角形中,∴,∴.故选:C.【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键.8.B【解析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【点睛】本题考查排列组合,属于基础题.9.B【解析】
根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.10.A【解析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.11.C【解析】
先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,,作出的图象,又由易知.故选:C.【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.12.B【解析】
由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
建立合适的直角坐标系,求出相关点的坐标,进而可得的坐标表示,利用平面向量数量积的坐标表示求出的表达式,求出其最小值即可.【详解】建立直角坐标系如图所示:则点,,,设点,所以,由平面向量数量积的坐标表示可得,,其中,因为,所以的最小值为.故答案为:【点睛】本题考查平面向量数量积的坐标表示和利用辅助角公式求最值;考查数形结合思想和转化与化归能力、运算求解能力;建立直角坐标系,把表示为关于角的三角函数,利用辅助角公式求最值是求解本题的关键;属于中档题.14.【解析】
由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.15.【解析】
由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.16.①③【解析】
连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论.【详解】对于命题①,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,,即,平面,平面,平面,命题①正确;对于命题②,,平面,平面,平面,若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题②错误;对于命题③,连接、,设,则,在中,,,则为等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题③正确;对于命题④,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,显然与不垂直,命题④错误.故答案为:①③.【点睛】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)详见解析;(Ⅱ)能,或.【解析】试题分析:(1)设直线,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线的斜率,再表示;(2)第一步由(Ⅰ)得的方程为.设点的横坐标为,直线与椭圆方程联立求点的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足,的条件就说明存在,否则不存在.试题解析:解:(1)设直线,,,.∴由得,∴,.∴直线的斜率,即.即直线的斜率与的斜率的乘积为定值.(2)四边形能为平行四边形.∵直线过点,∴不过原点且与有两个交点的充要条件是,由(Ⅰ)得的方程为.设点的横坐标为.∴由得,即将点的坐标代入直线的方程得,因此.四边形为平行四边形当且仅当线段与线段互相平分,即∴.解得,.∵,,,∴当的斜率为或时,四边形为平行四边形.考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即,分别用方程联立求两个坐标,最后求斜率.18.(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)取中点,连结、,四边形是平行四边形,由,,得,从而,,求出,由此能证明.(Ⅱ)以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【详解】证明:(Ⅰ)取中点,连结、,∵,,∴四边形是平行四边形,∵,,,∴,∴,∴,在中,,又∵为的中点,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,设,则,,,,∴,,,设面的法向量,则,取,得,同理,得平面的法向量,设二面角的平面角为,则,∴二面角的余弦值为.【点睛】本题考查面面垂直及线面垂直性质定理、线面垂直判定与性质定理以及利用空间向量求线面角与二面角,考查基本分析求解能力,属中档题.19.(1)(2)不存在;详见解析【解析】
(1)设,,,通过,即为的中点,转化求解,点的轨迹的方程.(2)设直线的方程为,先根据,可得,①,再根据韦达定理,点在椭圆上可得,②,将①代入②可得,该方程无解,问题得以解决【详解】(1)设,,则,,由题意知,所以为中点,由中点坐标公式得,即,又点在圆:上,故满足,得.曲线的方程.(2)由题意知直线的斜率存在且不为零,设直线的方程为,因为,故,即①,联立,消去得:,设,,,,,因为四边形为平行四边形,故,点在椭圆上,故,整理得②,将①代入②,得,该方程无解,故这样的直线不存在.【点睛】本题考查点的轨迹方程的求法、满足条件的点是否存在的判断与直线方程的求法,考查数学转化思想方法,是中档题.20.(Ⅰ)(Ⅱ)见证明【解析】
(Ⅰ)求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;(Ⅱ)由是减函数,且可得,当时,,则,即,两边同除以得,,即,从而,两边取对数,然后再证明恒成立即可,构造函数,,通过求导证明即可.【详解】解:(Ⅰ)的定义域为,.由是减函数得,对任意的,都有恒成立.设.∵,由知,∴当时,;当时,,∴在上单调递增,在上单调递减,∴在时取得最大值.又∵,∴对任意的,恒成立,即的最大值为.∴,解得.(Ⅱ)由是减函数,且可得,当时,,∴,即.两边同除以得,,即.从而,所以①.下面证;记,.∴,∵在上单调递增,∴在上单调递减,而,∴当时,恒成立,∴在上单调递减,即时,,∴当时,.∵,∴当时,,即②.综上①②可得,.【点睛】本题考查了导数与函数的单调性的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度富士康企业管理系统升级合同2篇
- 货物运输车辆租赁合同
- 海南省三亚市(2024年-2025年小学五年级语文)统编版随堂测试(下学期)试卷及答案
- 辽宁省营口市(2024年-2025年小学五年级语文)统编版质量测试(上学期)试卷及答案
- 土地流转合同
- 2024年度技术转让合同:生物制药技术的转让2篇
- 二零二四年度分包给排水安装工程成本控制合同3篇
- 2024装修合同:某体育中心室内设计工程
- 2024年度采购与销售合同3篇
- 个人股权转让合同(2024版):个人向公司转让股份的协议5篇
- 我为南京带货英语作文
- 医院安保反恐防暴演练
- 2024年社区工作者考试必考1000题含完整答案(名师系列)
- 《煤矿重大事故隐患判定标准》解读培训课件2024(中国煤矿安全技术培训中心)
- 委托收款授权书英文版
- 化工和危险化学品生产经营单位二十条重大隐患判定标准释义(中化协)
- 加速康复外科在我国发展现状、挑战与对策
- (2024年)《包装设计》教案完整版
- ibm销售七步法讲义
- 医院科普工作总结以及计划书
- 髋关节常见疾病的规范诊治培训课件
评论
0/150
提交评论