四川省射洪县2023-2024学年中考数学考前最后一卷含解析_第1页
四川省射洪县2023-2024学年中考数学考前最后一卷含解析_第2页
四川省射洪县2023-2024学年中考数学考前最后一卷含解析_第3页
四川省射洪县2023-2024学年中考数学考前最后一卷含解析_第4页
四川省射洪县2023-2024学年中考数学考前最后一卷含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省射洪县2023-2024学年中考数学考前最后一卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x﹣2﹣1012y830﹣10则抛物线的顶点坐标是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)2.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=13.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()A.50° B.40° C.30° D.25°4.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是()A.6 B.3.5 C.2.5 D.15.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A. B. C.9 D.6.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()A. B. C. D.7.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是()A. B. C. D.8.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,309.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.10.的化简结果为A.3 B. C. D.911.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)12.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于的方程有两个不相等的实数根,那么的取值范围是__________.14.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5.现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.15.一元二次方程x2=3x的解是:________.16.如图,在△ABC中,AB=AC,BC=8.是△ABC的外接圆,其半径为5.若点A在优弧BC上,则的值为_____________.17.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.18.已知抛物线的部分图象如图所示,根据函数图象可知,当y>0时,x的取值范围是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,⊙O是Rt△ABC的外接圆,∠C=90°,tanB=,过点B的直线l是⊙O的切线,点D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.(1)求证:△ACB∽△BED;(2)当AD⊥AC时,求的值;(3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.20.(6分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?21.(6分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.22.(8分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.23.(8分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=.24.(10分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.25.(10分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.26.(12分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;(II)如图②,当α=60°时,求点C′的坐标;(III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).27.(12分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=(用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.详解:当或时,,当时,,,解得,二次函数解析式为,抛物线的顶点坐标为,故选C.点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.2、B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.3、A【解析】

由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选A.【点睛】此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.4、C【解析】

因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,

处于中间位置的数是4,

∴中位数是4,

平均数为(2+3+4+5+x)÷5,

∴4=(2+3+4+5+x)÷5,

解得x=6;符合排列顺序;

(2)将这组数据从小到大的顺序排列后2,3,4,x,5,

中位数是4,

此时平均数是(2+3+4+5+x)÷5=4,

解得x=6,不符合排列顺序;

(3)将这组数据从小到大的顺序排列后2,3,x,4,5,

中位数是x,

平均数(2+3+4+5+x)÷5=x,

解得x=3.5,符合排列顺序;

(4)将这组数据从小到大的顺序排列后2,x,3,4,5,

中位数是3,

平均数(2+3+4+5+x)÷5=3,

解得x=1,不符合排列顺序;

(5)将这组数据从小到大的顺序排列后x,2,3,4,5,

中位数是3,

平均数(2+3+4+5+x)÷5=3,

解得x=1,符合排列顺序;

∴x的值为6、3.5或1.

故选C.【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.5、A【解析】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.6、C【解析】

根据中心对称图形的概念进行分析.【详解】A、不是中心对称图形,故此选项错误;

B、不是中心对称图形,故此选项错误;

C、是中心对称图形,故此选项正确;

D、不是中心对称图形,故此选项错误;

故选:C.【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解析】A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误;B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,故选C.8、C【解析】

根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.9、B【解析】∵关于x的不等式ax<b的解为x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集为x<2的是B选项中的不等式.故选B.10、A【解析】试题分析:根据二次根式的计算化简可得:.故选A.考点:二次根式的化简11、C【解析】

根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,∵其中一个交点的坐标为,则另一个交点的坐标为,故选C.【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.12、C【解析】

由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案为:m<且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.14、【解析】分析:根据勾股定理,可得,根据平行四边形的性质,可得答案.详解:由勾股定理得:=,即(0,4).矩形ABCD的边AB在x轴上,∴四边形是平行四边形,A=B,=AB=4-(-3)=7,与的纵坐标相等,∴(7,4),故答案为(7,4).点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.15、x1=0,x2=1【解析】

先移项,然后利用因式分解法求解.【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解16、2【解析】【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.试题解析:如图,作AD⊥BC,垂足为D,连接OB,∵AB=AC,∴BD=CD=BC=×8=4,∴AD垂直平分BC,∴AD过圆心O,在Rt△OBD中,OD==3,∴AD=AO+OD=8,在Rt△ABD中,tan∠ABC==2,故答案为2.【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.17、15π.【解析】试题分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为15π.考点:圆锥的计算.18、【解析】

根据抛物线的对称轴以及抛物线与x轴的一个交点,确定抛物线与x轴的另一个交点,再结合图象即可得出答案.【详解】解:根据二次函数图象可知:抛物线的对称轴为直线,与x轴的一个交点为(-1,0),∴抛物线与x轴的另一个交点为(3,0),结合图象可知,当y>0时,即x轴上方的图象,对应的x的取值范围是,故答案为:.【点睛】本题考查了二次函数与不等式的问题,解题的关键是通过图象确定抛物线与x轴的另一个交点,并熟悉二次函数与不等式的关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)详见解析;(2);(3).【解析】

(1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;(3)想办法证明AB垂直平分CF即可解决问题.【详解】(1)证明:如图1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切线,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如图2中,∵△ACB∽△BED;四边形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴=;(3)解:如图3中,∵tan∠ABC==,AC=2,∴BC=4,BE=4,DE=8,AB=2,BD=4,易证△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,设CF交AB于H,则CF=2CH=2×.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.20、(1)2元;(2)第二批花的售价至少为元;【解析】

(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.【详解】(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,根据题意得:,解得:,经检验:是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由可知第二批菊花的进价为元.设第二批菊花的售价为m元,根据题意得:,解得:.答:第二批花的售价至少为元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.21、(1)见解析;(2)图见解析;.【解析】

(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.【详解】解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为.∴S△A1B1C1:S△A2B2C2=()2=.22、(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.【解析】试题分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.23、(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3【解析】

(1)①由、结合可得四边形CEGF是矩形,再由即可得证;②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;(2)连接CG,只需证∽即可得;(3)证∽得,设,知,由得、、,由可得a的值.【详解】(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案为;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,设BC=CD=AD=a,则AC=a,则由得,∴AH=a,则DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案为3.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.24、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).【解析】

(1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;(2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;(3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.【详解】(1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;(2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE•BC=OC•AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如图2,设H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).综上所述:D点坐标为(1,2)或(4,﹣25).【点睛】本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.25、(1);(2)【解析】

(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:

共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,

所以至少有一个孩子是女孩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.26、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论