四川省江油市2022-2023学年数学八年级第一学期期末质量跟踪监视模拟试题含解析_第1页
四川省江油市2022-2023学年数学八年级第一学期期末质量跟踪监视模拟试题含解析_第2页
四川省江油市2022-2023学年数学八年级第一学期期末质量跟踪监视模拟试题含解析_第3页
四川省江油市2022-2023学年数学八年级第一学期期末质量跟踪监视模拟试题含解析_第4页
四川省江油市2022-2023学年数学八年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.2.下列说法正确的是()A.的平方根是 B.的算术平方根是C.的立方根是 D.是的一个平方根3.八年级1班生活委员小华去为班级购买两种单价分别为8元和10元的盆栽,共有100元,若小华将100元恰好用完,共有几种购买方案()A.2B.3C.4D.54.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.5.如图,AB=AC,AE=AD,要使△ACD≌△ABE,需要补充的一个条件是()A.∠B=∠C B.∠D=∠E C.∠BAC=∠EAD D.∠B=∠E6.一次函数y=-3x-2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.一个正比例函数的图象过点(2,﹣3),它的表达式为()A. B. C. D.8.若分式的值是零,则x的值是()A.-1 B.-1或2 C.2 D.-29.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.BC∥EF C.∠A=∠EDF D.AD=CF10.函数y=中自变量x的取值范围是()A.x>2 B.x≤2 C.x≥2 D.x≠211.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.1 B.5 C.7 D.4912.已知是方程的解,则的值是()A. B. C. D.二、填空题(每题4分,共24分)13.若分式有意义,则的取值范围是_______________.14.如果关于的二次三项式是完全平方式,那么的值是__________.15.三角形有两条边的长度分别是5和7,则最长边a的取值范围是_____.16.在中,,,点在斜边所在的直线上,,线段关于对称的线段为,连接、,则的面积为_______.17.一个多边形的每个外角都等于,则这个多边形的边数是___________18.若是完全平方式,则k的值为_______.三、解答题(共78分)19.(8分)根据要求画图:(1)如图(1),是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.(2)如图(2),在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.作△ABC关于点O的中心对称图形△A1B1C1.20.(8分)如图,中,是高,点是上一点,,,分别是上的点,且.(1)求证:.(2)探索和的关系,并证明你的结论.21.(8分)计算:﹣(2020﹣π)0+()﹣2﹣.22.(10分)如图,已知和点、求作一点,使点到、的距离相等且.请作出点.(用直尺、圆规作图,不写作法,保留作图痕迹)23.(10分)小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点为的中点时,如图(2),确定线段与的大小关系,请你写出结论:_____(填“”,“”或“”),并说明理由.(2)特例启发,解答题目:解:题目中,与的大小关系是:_____(填“”,“”或“”).理由如下:如图(3),过点作EF∥BC,交于点.(请你将剩余的解答过程完成)(3)拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若△的边长为,,求的长(请你画出图形,并直接写出结果).24.(10分)利用乘法公式计算:(1)(3xy)2(3x+2y)(3x-2y)(2)201622015×201725.(12分)已知:等边中.(1)如图1,点是的中点,点在边上,满足,求的值.(2)如图2,点在边上(为非中点,不与、重合),点在的延长线上且,求证:.(3)如图3,点为边的中点,点在的延长线上,点在的延长线上,满足,求的值.26.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a

参考答案一、选择题(每题4分,共48分)1、A【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项符合题意;

B、不是轴对称图形,故本选项不符合题意;

C、不是轴对称图形,故本选项不符合题意;

D、不是轴对称图形,故本选项不符合题意.

故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、D【分析】依据平方根,算数平方根,立方根的性质解答即可.【详解】解:A.25的平方根有两个,是±5,故A错误;B.负数没有平方根,故B错误;C.0.2是0.008的立方根,故C错误;D.是的一个平方根,故D正确.故选D.【点睛】本题主要考查了平方根,算术平方根,立方根的性质.平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根为0;③负数没有平方根.算术平方根的性质:①正数的算数平方根是正数;②0的算数平方根为0;③负数没有算数平方根.立方根的性质:①任何数都有立方根,且都只有一个立方根;②正数的立方根是正数,负数的立方根是负数,0的立方根是0.3、A【解析】解:设购买单价为8元的盆栽x盆,购买单价为10元的盆栽y盆,根据题意可得:8x+10y=100,当x=10,y=2,当x=5,y=6,当x=0,y=10(不合题意,舍去).故符合题意的有2种,故选A.点睛:此题主要考查了二元一次方程的应用,正确得出等量关系是解题关键.4、C【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、C【解析】解:∠BAC=∠EAD,理由是:∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ACD和△ABE中,∵AC=AB,∠CAD=∠BAE,AD=AE,∴△ACD≌△ABE(SAS),选项A,选项B,选项D的条件都不能推出△ACD≌△ABE,只有选项C的条件能推出△ACD≌△ABE.故选C.【点睛】本题考查了全等三角形的判定定理的应用,能正确运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6、A【分析】根据一次函数的性质,当k<0,b<0时,图象经过第二、三、四象限解答.【详解】解:∵k=-3<0,∴函数经过第二、四象限,∵b=﹣2<0,∴函数与y轴负半轴相交,∴图象不经过第一象限.故选A【点睛】本题考查一次函数的性质,利用数形结合思想解题是关键.7、A【分析】根据待定系数法求解即可.【详解】解:设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.【点睛】本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键.8、C【解析】因为(x+1)(x−2)=0,∴x=−1或2,当x=−1时,(x+1)(x+2)=0,∴x=−1不满足条件.当x=2时,(x+1)(x+2)≠0,∴当x=2时分式的值是0.故选C.9、D【分析】根据“SSS”可添加AD=CF使△ABC≌△DEF.【详解】解:A、添加∠BCA=∠F是SSA,不能证明全等,故A选项错误;B、添加.BC∥EF得到的就是A选项中的∠BCA=∠F,故B选项错误;C、添加∠A=∠EDF是SSA,不能证明全等,故C选项错误;D、添加AD=CF可得到AD+DC=CF+DC,即AC=DF,结合题目条件可通过SSS得到△ABC≌△DEF,故D选项正确;故选D.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边10、B【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.故选B.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.11、B【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,

∴BD=CD=BC=3,AD同时是BC上的高线,

∴AB=.

故它的腰长为1.

故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.12、D【分析】把代入原方程即可求出m.【详解】把代入得-2m+5-1=0,解得m=2故选D.【点睛】此题主要考查二元一次方程的解,解题的关键是直接代入原方程.二、填空题(每题4分,共24分)13、【分析】根据分式有意义的条件:分母不能为0即可确定的取值范围.【详解】∵分式有意义解得故答案为:.【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.14、【分析】根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可.【详解】解:∵是完全平方式∴-mx=±2×2•3x,

解得:m=±1.故答案为:±1.【点睛】本题是完全平方公式的考查,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15、7<a<1【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:最长边a的取值范围是:7<a<(7+5),即7<a<1.故答案为7<a<1.【点睛】此题主要考查的是三角形的三边关系,即:两边之和大于第三边,两边之差小于第三边.16、4或8【分析】分类讨论①当点D在线段BC上,②当点D在线段BC上时,根据对称的性质结合等腰直角三角形的性质分别求得AC、DF=EF=CF的长,从而可求得答案.【详解】①当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAC=∠EAC,∴DF=EF,∠DFC=∠DFA=90,∵,∴,∵AB=AC,∠BAC=90,∴EF=DF=CF=,AB=AC=,∴AF=AC-CF=,DE=EF+DF=,∴;②当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAF=∠EAF,∴DF=EF,∠DFC=90,∵,∴,∵AB=AC,∠BAC=90,∴DF=EF=CF=,AB=AC=,∴AF=AC+CF=,DE=EF+DF=,∴;故答案为:或.【点睛】本题考查了对称的性质,等腰直角三角形的性质,利用等腰直角三角形的性质求得腰长是解题的关键.注意分类讨论.17、6【分析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.【详解】故个多边形是六边形.故答案为:6.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.18、1【分析】根据完全平方公式的特征直接进行求解即可.【详解】是完全平方式,k=1.故答案为1.【点睛】本题主要考查完全平方公式,熟记公式是解题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析【分析】(1)根据轴对称图形的性质补画图形即可;(2)直接利用中心对称图形的性质得出对应位置,即可画出图形.【详解】(1)(四个答案中答对其中三个即可)(2)如图2,△A1B1C1,即为所求.【点睛】本题考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的定义是解答的关键.20、(1)证明见解析;(2)BM=BN,MB⊥BN;证明见解析.【分析】(1)由已知的等量关系利用SAS即可证明△ABE≌△DBC;(2)利用(1)的全等得到∠BAM=∠BDN.,再根据,,证明△ABM≌△DBN得到BM=BN,∠ABM=∠DBN.再利用同角的余角相等即可得到MB⊥MN.【详解】(1)证明:∵DB是高,∴∠ABE=∠DBC=90°.在△ABE和△DBC中,,∴△ABE≌△DBC.(2)解:BM=BN,MB⊥MN,证明如下:∵△ABE≌△DBC,∴∠BAM=∠BDN.在△ABM和△DBN中,∴△ABM≌△DBN.∴BM=BN,∠ABM=∠DBN.∴∠BDN+∠DBM=∠ABM+∠DBM=∠ABD=90°.∴MB⊥BN.【点睛】此题考查三角形全等的判定及性质定理,熟记定理并运用解题是关键.21、1.【分析】分别根据零指数幂的意义、负整数指数幂的运算法则、算术平方根和立方根的定义计算每一项,再合并即可.【详解】解:﹣(2121﹣π)1+()﹣2﹣=﹣1+4﹣6﹣(﹣3)=1.【点睛】本题考查了零指数幂的意义、负整数指数幂的运算法则、算术平方根和立方根的定义等知识,属于基本题型,熟练掌握基本知识是解题关键.22、答案见解析【分析】作出∠ECD的平分线,线段AB的垂直平分线,两线的交点就是P点.【详解】解:如图所示:点P为所求.【点睛】此题主要考查了复杂作图,解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)线段垂直平分线上的点到线段两端点的距离相等.23、(1),理由详见解析;(2),理由详见解析;(3)3或1【分析】(1)根据等边三角形的性质、三线合一的性质证明即可;(2)根据等边三角形的性质,证明△≌△即可;(3)注意区分当点在的延长线上时和当点在的延长线上时两种情况,不要遗漏.【详解】解:(1),理由如下:,∵△是等边三角形,,点为的中点,,,,,,;故答案为:;(2),理由如下:如图3:∵△为等边三角形,且EF∥BC,,,;;,,,在△与△中,,∴△≌△(AAS),,∴△为等边三角形,,.(3)①如图4,当点在的延长线上时,过点作EF∥BC,交的延长线于点:则,;,;∵△为等边三角形,,,,;而,,;在△和△中,,∴△≌△(AAS),;∵△为等边三角形,,,;②如图5,当点在的延长线上时,过点作EF∥BC,交的延长线于点:类似上述解法,同理可证:,,.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质.熟练掌握等边三角形的性质,构造合适的全等三角形是解题的关键.24、(1);(2)1【分析】(1)利用完全平方公式展开第一项,再利用平方差公式计算第二项,然后去括号,合并同类项即可;(2)将原式变形后,利用平方差公式即可.【详解】解:(1)原式;(2)原式.【点睛】本题考查的知识点是完全平方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论