云南省楚雄市2022-2023学年数学八年级第一学期期末综合测试试题含解析_第1页
云南省楚雄市2022-2023学年数学八年级第一学期期末综合测试试题含解析_第2页
云南省楚雄市2022-2023学年数学八年级第一学期期末综合测试试题含解析_第3页
云南省楚雄市2022-2023学年数学八年级第一学期期末综合测试试题含解析_第4页
云南省楚雄市2022-2023学年数学八年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.2.下列线段长能构成三角形的是()A.3、4、7 B.2、3、6 C.5、6、11 D.4、7、103.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. B. C. D.4.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90° B.120° C.270° D.360°5.一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A.150° B.180° C.135° D.不能确定6.甲从A地到B地要走m小时,乙从B地到A地要走n小时,若甲、乙二人同时从A、B两地出发,经过几小时相遇()A.(m+n)小时 B.小时 C.小时 D.小时7.下列式子,表示4的平方根的是()A. B.42 C.﹣ D.±8.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()A.21 B.22或27 C.27 D.21或279.如图,在中,,,,点到的距离是()A. B. C. D.10.如图,△ABC≌△DCB,点A和点D是对应点,若AB=6cm,BC=8cm,AC=7cm,则DB的长为()A.6cm B.8cm C.7cm D.5cm二、填空题(每小题3分,共24分)11.将点P(-1,2)向左平移2个单位,再向上平移1个单位所得的对应点的坐标为_____.12.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于_____.13.如图,中,,,,AD是的角平分线,,则的面积为_________.14.已知,点在第二象限,则点在第_________象限.15.下列命题:①若a2=b,则a=;②角平分线上的点到角两边的距离相等;③全等三角形的周长相等;④等边三角形的三个内角相等.它们的逆命题是真命题的有_______.16.已知△ABC是边长为6的等边三角形,过点B作AC的垂线l,垂足为D,点P为直线l上的点,作点A关于CP的对称点Q,当△ABQ是等腰三角形时,PD的长度为___________17.如图,在中,点是的中点,点是上一点,.若,则的度数为______.18.如图,在中,,的垂直平分线交于点,交于点.若,的度数为________.三、解答题(共66分)19.(10分)已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.20.(6分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨(x>14),应交水费为y元,请写出y与x之间的函数关系式;21.(6分)在春节来临之际,某商店订购了型和型两类糖果,型糖果28元/千克,型糖果24元/千克,若订购型糖果的质量比订购型糖果的质量的2倍少20千克,购进两种糖果共用了2560元,求订购型、型两类糖果各多少千克?22.(8分)已知:在中,,点在上,连结,且.(1)如图1,求的度数;(2)如图2,点在的垂直平分线上,连接,过点作于点,交于点,若,,求证:是等腰直角三角形;(3)如图3,在(2)的条件下,连接,过点作交于点,且,若,求的长.23.(8分)已知直线AB:y=kx+b经过点B(1,4)、A(5,0)两点,且与直线y=2x-4交于点C.(1)求直线AB的解析式并求出点C的坐标;(2)求出直线y=kx+b、直线y=2x-4及与y轴所围成的三角形面积;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x-4于点Q,若线段PQ的长为3,求点P的坐标.24.(8分)已知a,b为实数,且满足关系式:|a﹣2b|+(3a﹣b﹣11)2=1.求:(1)a,b的值;(2)5的平方根.25.(10分)如图,△ABC中,∠BAC=90°,∠ABC=∠ACB,又∠BDC=∠BCD,且∠1=∠2,求∠3的度数.26.(10分)“太原市批发市场”与“西安市批发市场”之间的商业往来频繁,如图,“太原市批发市场”“西安市批发市场”与“长途汽车站”在同一线路上,每天中午12:00一辆客车由“太原市批发市场”驶往“长途汽车站”,一辆货车由“西安市批发市场”驶往“太原市批发市场”,假设两车同时出发,匀速行驶,图2分别是客车、货车到“长途汽车站”的距离与行驶时间之间的函数图像.请你根据图象信息解决下列问题:(1)由图2可知客车的速度为km/h,货车的速度为km/h;(2)根据图2直接写出直线BC的函数关系式为,直线AD的函数关系式为;(3)求点B的坐标,并解释点B的实际意义.

参考答案一、选择题(每小题3分,共30分)1、B【详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图2、D【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【详解】解:A、3+4=7,不能构成三角形;B、2+3<6,不能构成三角形;C、5+6=11,不能构成三角形;D、4+7>10,能构成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.3、D【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.4、B【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,

∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,

∠BAC=180°-60°-∠1=120°-∠1,

∵∠ABC+∠ACB+∠BAC=180°,

∴60°+(120°-∠2)+(120°-∠1)=180°,

∴∠1+∠2=120°.

故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.5、A【详解】解:根据对顶角相等,所以∠CME=∠AMN,∠BNF=∠MNA,在三角形AMN中,内角和为180°,所以∠CME+∠BNF=180-30=150°故选:A6、D【解析】假设甲、乙经过x小时相遇,令A、B距离为a,甲从A地到B地要走m小时,则甲的速度为;乙从B地到A地要走n小时,则乙的速度为根据题目中的等量关系列出方程求解即可.【详解】假设甲、乙经过x小时相遇,令A、B距离为a,甲从A地到B地要走m小时,则甲的速度为;乙从B地到A地要走n小时,则乙的速度为根据题意,列方程解得故选:D.【点睛】本题主要考查分式方程的应用,解题的关键是分析题意,找出题目中的等量关系.7、D【分析】根据平方根的表示方法判断即可.【详解】解:表示4的平方根的是±,故选D.【点睛】本题考查了实数的平方根,熟知定义和表示方法是解此题的关键.8、C【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;

当腰取11,则底边为5,则三角形的周长=11+11+5=1.

故选C.【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.9、A【分析】根据勾股定理求出AB,再根据三角形面积关系求CD.【详解】在中,,,,所以AB=因为AC∙BC=AB∙CD所以CD=故选A【点睛】考核知识点:勾股定理的运用.利用面积关系求斜边上的高是关键.10、C【分析】根据全等三角形的性质即可求出:AC=BD=7cm.【详解】解:∵△ABC≌△DCB,AC=7cm,∴AC=BD=7cm.故选:C.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.二、填空题(每小题3分,共24分)11、(-1,1)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】原来点的横坐标是-1,纵坐标是2,向左平移2个单位,再向上平移1个单位得到新点的横坐标是-1−2=-1,纵坐标为2+1=1.即对应点的坐标是(-1,1).故答案填:(-1,1).【点睛】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12、75°【分析】根据已知条件设,然后根据三角形的内角和定理列方程即可得到结果.【详解】∵在△ABC中,∴设故答案为:.【点睛】本题考查了三角形的内角和定理,熟记定理是解题关键.13、8【分析】设AD和BC交于点E,过E作EF垂直于AC于点F,根据角平分线性质意有BE=EF,可证△ABE≌△AEF,设BE=x,EC=8-x,在Rt△EFC中利用勾股定理计算出EF和EC的长度,然后由面积相等,可求DC的长度,应用勾股定理求出DE,再由△CDE的面积求出DG,计算面积即可.【详解】解:如图所示,设AD和BC交于点E,过E作EF垂直于AC于点F,过D作DG垂直于BC交BC于点G∵AD是的角平分线,∠ABC=90°,∠AFE=90°,∴BE=FE在Rt△ABE和Rt△AFE中∴Rt△ABE≌Rt△AFE(HL)∴AB=AF=6,在Rt△ABC中,,∴AC=10∴FC=4设BE=x,则EC=8-x,在Rt△EFC中由勾股定理可得:解得x=3在Rt△ABE中由勾股定理可得:∴AE=∵∴CD=,在Rt△CDE中由勾股定理可得:∴DE=,∵∴∴GD=2∴=8,故答案为:8【点睛】本题主要考查三角形综合应用,解题的关键是利用角平分线性质构造辅助线,然后结合面积相等和勾股定理求相关长度.14、四【分析】首先根据点A所在的象限可判定,然后即可判定点B所在的象限.【详解】∵点在第二象限,∴∴∴点B在第四象限故答案为四.【点睛】此题主要考查根据坐标判定点所在的象限,熟练掌握,即可解题.15、①②④【分析】先表示出每个选项的逆命题,然后再进行判断,即可得到答案.【详解】解:①逆命题为:若,则,真命题;②逆命题为:到角两边的距离相等的点在这个角的角平分线上,真命题;③周长相等的三角形是全等三角形,假命题;④三个内角相等的三角形是等边三角形,真命题;故答案为:①②④.【点睛】本题考查了逆命题,判断命题的真假,解题的关键是掌握逆命题的定义.16、、、或【分析】先根据题意作图,再分①当②当③当④当时四种情况根据等边三角形的性质及对称性分别求解.【详解】∵点A、Q关于CP对称,∴CA=CQ,∴Q在以C为圆心,CA长为半径的圆上∵△ABQ是等腰三角形,∴Q也在分别以A、B为圆心,AB长为半径的两个圆上和AB的中垂线上,如图①,这样的点Q有4个。(1)当时,如图②,过点做∵点A、Q关于CP对称,∴,又∵,∴,∴∵∠OCD=30°,BD⊥AC∴,,∴∴∴(2)当时,如图③同理可得,∴∴(3)当时,如图④是等边三角形,,∴(4)当时,如图⑤是等边三角形,点与点B重合,∴故填:、、或【点睛】此题主要考查等边三角形的性质及对称性的应用,解题的关键是熟知等边三角形的性质及对称性,再根据题意分情况讨论.17、【分析】延长AD到F使,连接BF,通过,根据全等三角形的性质得到,,等量代换得,由等腰三角形的性质得到,即可得到,进而利用三角形的内角和解答即可得.【详解】如图,延长AD到F,使,连接BF:∵D是BC的中点∴又∵,∴∴,,∵,,∴,∴∴∴故答案为:【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.18、38°【分析】设∠A的度数为x,根据线段的垂直平分线的性质得到DB=DA,用x表示出∠ABC、∠C的度数,根据三角形内角和定理列式计算即可.【详解】解:设∠A的度数为x,

∵MN是AB的垂直平分线,

∴DB=DA,

∴∠DBA=∠A=x,

∵AB=AC,

∴∠ABC=∠C=33°+x,

∴33°+x+33°+x+x=180°,

解得x=38°.

故答案为:38°.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、解答题(共66分)19、证明见解析【解析】试题分析:由角平分线的定义可知:∠EAD=∠EAC,再由三角形的外角的性质可得∠EAD=∠B,然后利用平行线的判定定理可证明出结论.试题解析:∵AD平分∠EAC,∴∠EAD=∠EAC.又∵∠B=∠C,∠EAC=∠B+∠C,∴∠B=∠EAC.∴∠EAD=∠B.所以AD∥BC.考点:1.平行线的性质;(2)角平分线的定义;(3)三角形的外角性质.20、(1)每吨水的政府补贴优惠价元,市场调节价为元;(2)【分析】(1)设每吨水的政府补贴优惠价为元,市场调节价为元,列出相应二元一次方程组,求解出m,n的值即可.(2)根据用水量和水费的关系,写出y与x之间的函数关系式.【详解】解:(1)设每吨水的政府补贴优惠价为元,市场调节价为元.,解得:,答:每吨水的政府补贴优惠价元,市场调节价为元.(2)当时,,【点睛】本题考查了二元一次方程组和一次函数的实际应用,掌握解二元一次方程组和一次函数的方法是解题的关键.21、订购型糖果40千克,订购型糖果60千克【分析】设订购型糖果千克,订购型糖果千克,根据型糖果的质量比型糖果的2倍少20千克,购进两种糖果共用了2560元列出方程组,求解即可.【详解】解:设订购型糖果千克,订购型糖果千克,由题意得解得:∴订购型糖果40千克,订购型糖果60千克.【点睛】本题考查了二元一次方程组的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.22、(1);(2)证明见解析;(3).【分析】(1)根据已知推出,然后利用三角形外角的性质有,则,然后利用即可求解;(2)由垂直平分线的性质得到,从而有,根据同位角相等,两直线平行可得出,进而得出,然后通过等量代换得出,所以,,则结论可证;(3)首先证明,则有,,,然后证明得出,然后通过对角度的计算得出,,同理证明点在的垂直平分线上,则有,所以,最后通过证明,得出,则答案可解.【详解】(1)(2)∵点在线段的垂直平分线上.又∴是等腰直角三角形(3)如图,过作交的延长线于点于点,连接,令,与的交点分别为点,.在四边形中,又又又又又又∴点在的垂直平分线上同理点在的垂直平分线上【点睛】本题主要考查全等三角形的判定及性质,平行线的性质,角的和与差,掌握全等三角形的判定及性质,平行线的性质,角的和与差是解题的关键.23、(1)y=-x+5;点C(3,2);(2)S=;(3)P点坐标为(2,3)或(4,1).【分析】(1)根据待定系数法求出直线AB解析式,再联立两函数解出C点坐标;(2)依次求出y=-x+5和y=2x-4与y轴交点坐标,根据三角形的面积公式即可求解;(3)设P点(m,-m+5)Q点坐标为(m,2m-4),根据线段PQ的长为3,分情况即可求解.【详解】(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴解得∴直线AB的解析式为:y=-x+5;∵若直线y=2x-4与直线AB相交于点C,∴解得∴点C(3,2);(2)∵y=-x+5与y轴交点坐标为(0,5),y=2x-4与y轴交点坐标为(0,-4),C点坐标为(3,2)∴S=(3)设P点(m,-m+5)Q点坐标为(m,2m-4)则-m+5-(2m-4)=3或者2m-4-(-m+5)=3解得m=2或m=4∴P点坐标为(2,3)或(4,1).【点睛】此题主要考查一次函数图像与几何综合,解题的关键是熟知一次函数的图像与性质、待定系数法的应用.24、(1)a=4,b=2;(2)±2.【分析】(1)先根据非负数的性质列出关于ab的方程组,求出a、b的值即可;(2)把ab的值代入代数式进行计算即可.【详解】(1)∵a,b为实数,且满足关系式:|a﹣2b|+(2a﹣b﹣11)2=1,∴,解得∴a=4,b=2;(2)∵a=4,b=2,∴原式5=6﹣2+5=3.∵(±2)2=3,∴5的平方根是±2.【点睛】本题考查的是实数的运算,熟知非负数的性质及实数的运算法则是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论