版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如果把分式中的x,y都乘以3,那么分式的值k()A.变成3k B.不变 C.变成 D.变成9k2.如图,在△PAB中,∠A=∠B,D、E、F分别是边PA、PB、AB上的点,且AD=BF,BE=AF.若∠DFE=34°,则∠P的度数为()A.112° B.120° C.146° D.150°3.运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2–6x+9 C.x2+6x+9 D.x2+3x+94.如图所示,直角三边形三边上的半圆面积从小到大依次记为、、,则、、的关系是()A. B. C. D.5.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>时,y>0D.y值随x值的增大而增大6.若,那么().A.1 B. C.4 D.37.在实数中,,,是无理数的是()A. B. C. D.8.如图,一副分别含有和角的两个直角三角板,拼成如下图形,其中,,,则的度数是()A.15° B.25° C.30° D.10°9.能使成立的x的取值范围是()A.x≠2 B.x≥0 C.x≥2 D.x>210.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是11.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+412.在中,若是的正比例函数,则值为A.1 B. C. D.无法确定二、填空题(每题4分,共24分)13.如图,在中,,分别垂直平分边和,交于点,.若,则______.14.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为_____.16.计算:=_______.17.如果方程无解,则m=___________.18.如图,在中,,平分交BC于点,于点.若,则_______________.三、解答题(共78分)19.(8分)阅读某同学对多项式进行因式分解的过程,并解决问题:解:设,原式(第一步)(第二步)(第三步)(第四步)(1)该同学第二步到第三步的变形运用了________(填序号);A.提公因式法B.平方差公式C.两数和的平方公式D.两数差的平方公式(2)该同学在第三步用所设的的代数式进行了代换,得到第四步的结果,这个结果能否进一步因式分解?________(填“能”或“不能”).如果能,直接写出最后结果________.(3)请你模仿以上方法尝试对多项式进行因式分行解.20.(8分)计算:(1)(2a)3×b4÷12a3b2(2)(23)21.(8分)如图,已知,垂足分别是.(1)证明:.(2)连接,猜想与的关系?并证明你的猜想的正确性.22.(10分)如图,网格中的与为轴对称图形,且顶点都在格点上.(1)利用网格,作出与的对称轴;(2)结合图形,在对称轴上画出一点,使得最小;(3)如果每个小正方形的边长为1,请直接写出的面积.23.(10分)小明在学了尺规作图后,通过“三弧法”作了一个,其作法步骤是:①作线段,分别以为圆心,取长为半径画弧,两弧的交点为C;②以B为圆心,长为半径画弧交的延长线于点D;③连结.画完后小明说他画的的是直角三角形,你认同他的说法吗,请说明理由.24.(10分)如图,在四边形ABCD中,.(1)度;(2)若的角平分线与的角平分线相交于点E,求的度数.25.(12分)星期四上午6点,王老师从学校出发,驾车到市里开会,8点准时到会场,中午12点钟回到学校,他在这一段时间内的行程(即离开学校的距离)与时间的关系可用图中的折线表示,请根据图中提供的信息,解答下列问题:(1)开会地点离学校多远?(2)会议结束后王老师驾车返回学校的平均速度是多少?26.公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095若将阅读能力、思维能力和表达能力三项测试得分按1∶3∶1的比确定每人的最后成绩,谁将被录用?
参考答案一、选择题(每题4分,共48分)1、B【分析】x,y都乘以3,再化简得=.【详解】==k.所以,分式的值不变.故选B【点睛】本题考核知识点:分式的性质.解题关键点:熟记分式基本性质.2、A【分析】根据等边对等角得到∠A=∠B,证得△ADF≌△BFE,得∠ADF=∠BFE,由三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,
∴∠A=∠B,
在△ADF和△BFE中,∴△ADF≌△BFE(SAS),
∴∠ADF=∠BFE,
∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,
∴∠A=∠DFE=34°,∴∠B=34°,
∴∠P=180°-∠A-∠B=112°,
故选:A.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.3、C【解析】试题分析:运用完全平方公式可得(x+3)2=x2+2×3x+32=x2+6x+1.故答案选C考点:完全平方公式.4、A【分析】设三个半圆的直径分别为:d1、d2、d1,半圆的面积=π×()2,将d1、d2、d1代入分别求出S1、S2、S1,由勾股定理可得:d12+d22=d12,观察三者的关系即可.【详解】解:设三个半圆的直径分别为:d1、d2、d1,S1=×π×()2=,S2=×π×()2=,S1=×π×()2=.由勾股定理可得:d12+d22=d12,∴S1+S2=(d12+d22)==S1,所以S1、S2、S1的关系是:S1+S2=S1.故选A.【点睛】本题主要考查运用勾股定理结合图形求面积之间的关系,关键在于根据题意找出直角三角形,运用勾股定理求出三个半圆的直径之间的关系.5、C【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.6、C【分析】由非负数之和为0,可得且,解方程求得a,b,代入a-b问题得解.【详解】解:,且,解得,,,故选:C【点睛】本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.7、A【解析】无限不循环小数是无理数,根据定义判断即可.【详解】是无理数;是有理数,不是无理数;=3是有理数,不是无理数;=2是有理数,不是无理数,故选:A.【点睛】此题考查无理数定义,熟记定义并掌握无理数与有理数的区别即可正确解答.8、A【分析】先由平角的定义求出∠BDF的度数,根据三角形内角和定理即可得出结论.【详解】解:∵Rt△CDE中,∠EDC=60°,
∴∠BDF=180°-60°=120°,
∵∠C=90°,∠BAC=45°,
∴∠B=45°,
∴∠BFD=180°-45°-120°=15°.
故选:A.【点睛】本题考查的是三角形的内角和,熟知三角形的内角和是解答此题的关键.9、D【分析】根据被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围即可.【详解】由题意可得:,解得:x>1.故选D.【点睛】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.10、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数11、A【分析】根据图象信息一一判断即可解决问题.【详解】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.【点睛】此题主要考查了一次函数的应用、学会待定系数法确定函数解析式,正确由图象得出正确信息是解题的关键,属于中考常考题.12、A【分析】先根据正比例函数的定义列出关于的方程组,求出的值即可.【详解】函数是正比例函数,,解得,故选.【点睛】本题考查的是正比例函数的定义,正确把握“形如的函数叫正比例函数”是解题的关键.二、填空题(每题4分,共24分)13、1【分析】依据DM、EN分别垂直平分AB和AC,即可得到AD=BD,AE=EC,进而得出∠B=∠BAD,∠C=∠EAC,依据∠BAC=110°,即可得到∠DAE的度数.【详解】解:∵∠BAC=110°,
∴∠B+∠C=180°-110°=70°,
∵DM是线段AB的垂直平分线,
∴DA=DB,
∴∠DAB=∠B,
同理,EA=EC,
∴∠EAC=∠C,
∴∠DAE=∠BAC-∠DAB-∠EAC=∠BAC-(∠B+∠C)=1°,
故答案为:1.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14、100°【分析】依据轴对称的性质可得到∠C=∠C′,然后依据三角形的内角和定理求解即可.【详解】解:∵△ABC与△A′B′C′关于直线l对称,
∴∠C=∠C′=30°.
∴∠B=180°-∠A-∠C=180°-50°-30°=100°.
故答案为100°.【点睛】本题主要考查的是轴对称的性质、三角形的内角和定理,熟练掌握相关知识是解题的关键.15、45°.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【详解】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.【点睛】此题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.16、【分析】根据单项式乘以多项式的运算法则,把单项式分别和多项式的每一项相乘计算即可.【详解】,故答案为:.【点睛】本题考查了单项式乘以多项式,熟练掌握运算法则是解题的关键.17、1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x=2,然后把x=2代入整式方程求解即可.【详解】解:去分母,得x-3=﹣m,∵原方程无解,∴x-2=0,即x=2,把x=2代入上式,得2-3=﹣m,所以m=1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.18、56°【分析】根据三角形内角和定理证明∠DBE=∠DAC,再根据角平分线的定义即可解决问题.【详解】∵∠C=∠E=90°,∠ADC=∠BDE,∴∠DBE=∠DAC=28°.∵AD平分∠CAB,∴∠CAB=2∠CAD=2×28°=56°.故答案为:56°.【点睛】本题考查了三角形内角和定理,角平分线的定义等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共78分)19、(1)C;(2)能,;(3)【分析】(1)根据分解因式的过程直接得出答案;
(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;
(3)将(x2+6x)看作整体进而分解因式即可.【详解】解:(1)C;(2)能,;(3)设原式【点睛】此题主要考查了公式法分解因式,熟练利用完全平方公式分解因式是解题关键,注意分解因式要彻底.20、(1);(2).【分析】(1)直接利用整式的乘除运算法则进而求出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【详解】解:(1)原式=8a3•b4÷12a3b2b2;(2)原式=(89).【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题的关键.21、(1)证明见解析;(2)DF=BE,DF∥BE,证明见解析.【分析】(1)求出AF=CE,∠AFB=∠DEC=90°,根据平行线的性质得出∠DCE=∠BAF,根据ASA推出△AFB≌△CED即可;(2)根据平行四边形的判定得出四边形是平行四边形,再根据平行四边形的性质得出即可.【详解】(1)证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠DEC=90°,∵DC∥AB,∴∠DCE=∠BAF,在△AFB和△CED中∴△AFB≌△CED,∴DE=EF;(2)DF=BE,DF∥BE,证明:∵DE⊥AC,BF⊥AC,∴DE∥BF,∵DE=BF,∴四边形DEBF是平行四边形,∴DF=BE,DF∥BE.【点睛】本题考查了全等三角形的性质和判定,平行线的性质,平行四边形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.22、(1)见解析;(2)见解析;(1)1【分析】(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线;(2)连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得.【详解】解:(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线.(2)如图所示,点P即为所求;连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船舶股权转让协议
- 公司采购合同
- 产品双方购销合同
- 驾校租赁场地合同
- 兑店转让合同范文
- 湖南省张家界市2024年七年级上学期期中数学试题【附答案】
- 工程项目施工现场管理制度(班组)
- 湖南省衡阳市祁东县2023-2024学年高一下学期7月期末统考政治试卷
- 工程项目管理资料归档类别
- 高考生物一轮复习讲义选修3第2讲细胞工程
- 2025高考一轮复习:15位古代名人传记文言文挖空练习高考语文文言文备考总复习(全国)
- 2024-2030年中国电表行业发展分析及投资前景预测研究报告
- 供应链管理师技能竞赛理论考试题及答案
- 《创意改善生活》课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 应急救援方案
- 2024-2025学年 浙教版七年级数学上册期中(第1-4章)培优试卷
- 科学脊梁钱学森人物介绍
- 2024年部编新改版语文小学一年级上册期中考试检测题(有答案)
- GB/T 44109-2024信息技术大数据数据治理实施指南
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 广东省清远市英德市2023-2024学年八年级上学期期中物理试题
评论
0/150
提交评论