版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知,则a+b+c的值是()A.2 B.4 C.±4 D.±22.若关于的多项式含有因式,则实数的值为()A. B.5 C. D.13.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y34.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.下列运算错误的是()A. B. C. D.7.如果把分式中的x与y都扩大2倍,那么这个分式的值()A.不变 B.扩大2倍 C.扩大4倍 D.扩大6倍8.甲、乙、丙、丁四名设计运动员参加射击预选赛,他们射击成绩的平均数及方差如下表示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()甲乙丙丁899811A.甲 B.乙 C.丙 D.丁9.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺 B.11尺 C.12尺 D.13尺10.点P的坐标是(2-a,3a+6),且点P到两坐标轴的距离相等,则点P坐标是()A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或11.下列各组数可能是一个三角形的边长的是()A.5,7,12 B.5,6,7 C.5,5,12 D.1,2,612.下列运算错误的是()A.. B.. C.. D..二、填空题(每题4分,共24分)13.分解因式:=________.14.在一次函数y=﹣3x+1中,当﹣1<x<2时,对应y的取值范围是_____.15.若关于的分式方程的解是负数,则m的取值范围是_________________.16.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,BD的长为_____.17.分解因式:x3y-xy=______.18.在平面直角坐标系xOy中,O为坐标原点,A是反比例函数图象上的一点,AB垂直y轴,垂足为点B,那么的面积为___________.三、解答题(共78分)19.(8分)如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:,试分别求:(1)当=68和=-4时,的值;(2)当=10时,的值.20.(8分)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解析:由分母为,可设则对应任意x,上述等式均成立,,,..这样,分式被拆分成了一个整式与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)当时,直接写出________,的最小值为________.21.(8分)某同学碰到这么一道题“分解因式:a4+4”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上4a2,再减去4a2,这样原式化为(a4+4a2+4)﹣4a2,……”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.你会吗?请完成此题.22.(10分)如图,为轴上一个动点,(1)如图1,当,且按逆时针方向排列,求点的坐标.(图1)(2)如图2,当,且按顺时针方向排列,连交轴于,求证:(图2)(3)如图3,m>2,且按顺时针方向排列,若两点关于直线的的对称点,画出图形并用含的式子表示的面积图323.(10分)(1)如图①,已知线段,以为一边作等边(尺规作图,保留作图痕迹,不写作法);(2)如图②,已知,,,分别以为边作等边和等边,连接,求的最大值;(3)如图③,已知,,,,为内部一点,连接,求出的最小值.24.(10分)如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C落在G处,PG交BC于H,折痕为EF.连接OP、OH.初步探究(1)当AP=4时①直接写出点E的坐标;②求直线EF的函数表达式.深入探究(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.拓展应用(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.25.(12分)如图,在等边△ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.26.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答下列问题:(1)本次调查中,一共调查了名同学;(2)将条形统计图补充完整;(3)在扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据调查结果,估计学校购买科普类读物多少册比较合理?
参考答案一、选择题(每题4分,共48分)1、D【分析】先计算(a+b+c)2,再将代入即可求解.【详解】∵∴∴=4∴a+b+c=±2故选:D【点睛】本题考查了代数式的求值,其中用到了.2、C【分析】设,然后利用多项式乘多项式法则计算,合并后根据多项式相等的条件即可求出p的值.【详解】解:根据题意设,∴-p=-a-2,2a=-6,解得:a=-3,p=-1.故选:C.【点睛】此题考查了因式分解的意义,熟练掌握并灵活运用是解题的关键.3、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.4、C【解析】试题分析:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOB和△COD中,,∴△AOB≌△COD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选C.考点:平行线的判定.5、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm=28×10﹣9m=2.8×10﹣8m,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、C【分析】根据负整数指数幂,逐个计算,即可解答.【详解】A.,正确,故本选项不符合题意;B.,正确,故本选项不符合题意;C.,错误,故本选项符合题意;D.,正确,故本选项不符合题意;故选:C.【点睛】本题主要考查了负整数指数幂的运算.负整数指数为正整数指数的倒数.7、B【分析】根据分式的分子分母都乘以或处以同一个不为零的数,分式的值不变,可得答案.【详解】分式中的x与y都扩大2倍,得,
故选:B.【点睛】此题考查分式的基本性质,解题关键在于掌握分式的分子分母都乘以或处以同一个不为零的数,分式的值不变.8、B【分析】根据平均数及方差的定义和性质进行选择即可.【详解】由上图可知,甲、乙、丙、丁中乙、丙的平均数最大,为9∵∴乙的方差比丙的方差小∴选择乙更为合适故答案为:B.【点睛】本题考查了平均数和方差的问题,掌握平均数及方差的定义和性质是解题的关键.9、D【分析】我们可以将其转化为数学几何图形,可知边长为10尺的正方形,则B'C=5尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理列出方程,求出的方程的解即可得到芦苇的长.【详解】解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故选D.【点睛】此题主要考查了勾股定理的应用,熟练运用数形结合的解题思想是解题关键.10、D【分析】由点P到两坐标轴的距离相等,建立绝对值方程再解方程即可得到答案.【详解】解:点P到两坐标轴的距离相等,或当时,当综上:的坐标为:或故选D.【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.11、B【解析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A、5+7=12,不能构成三角形;B、5+6>7,能构成三角形;C、5+5<12,不能构成三角形;D、1+2<6,不能构成三角形.故选:B.【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.12、D【分析】根据及整式的除法法则及零指数幂与负指数幂计算.【详解】解:A选项,A正确;B选项,B正确;C选项,C正确;D选项,D错误.故选:D【点睛】本题综合考查了整式乘法的相关运算,熟练掌握整式的除法运算及零指数幂与负指数幂的计算是解题的关键.即.二、填空题(每题4分,共24分)13、【分析】根据提公因式法即可求解.【详解】=故答案为:.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.14、-5<y<1【解析】解:由y=﹣3x+1得到x=﹣,∵﹣1<x<2,∴﹣1<﹣<2,解得﹣5<y<1.故答案为﹣5<y<1.点睛:本题考查了一次函数的性质,根据题意得出关于y的不等式是解答此题的关键.15、且【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于m的不等式,求出不等式的解集即可确定出m的范围.【详解】方程两边同乘(),
解得,
∵,
∴,
解得,
又,
∴,
∴,
即且.
故答案为:且.【点睛】本题考查了分式方程的解以及解一元一次不等式,关键是会解出方程的解,特别注意:不要漏掉隐含条件最简公分母不为1.16、1.【分析】根据勾股定理求出AC,根据三角形的外角的性质得到∠B=∠CAB,根据等腰三角形的性质求出BC,计算即可.【详解】解:∵∠D=90°,CD=6,AD=8,∴AC===10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=1,故答案:1.【点睛】本题考查勾股定理、三角形的外角的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17、【详解】原式=xy(x2﹣1)=xy(x+1)(x﹣1),故答案为:xy(x+1)(x﹣1)18、1【分析】设点A的坐标是,然后根据三角形的面积公式解答即可.【详解】解:设点A的坐标是,∵AB垂直y轴,∴,∴的面积=.故答案为:1.【点睛】本题考查了反比例函数系数k的几何意义,属于基础题型,熟练掌握反比例函数系数k的几何意义是关键.三、解答题(共78分)19、(1)当时,=20;当时,=;(2)当时,.【分析】(1)将f=68和f=-4分别代入关系式进行求解即可;(2)把c=10代入关系式进行求解即可.【详解】(1)当时,=20;当时,=;(2)当时,,解得.20、(1)分式被拆分成了一个整式与一个分式的和;(2)0;1.【分析】(1)参照例题材料,设,然后求出m、n的值,从而即可得出答案;(2)先根据得出,再根据不等式的运算即可得.【详解】(1)由分母为,可设对应任意x,上述等式均成立,解得这样,分式被拆分成了一个整式与一个分式的和;(2)由(1)得当时,,且当时,等号成立则当时,取得最小值,最小值为1故答案为:0;1.【点睛】本题考查了分式的拆分运算、平方数的非负性、不等式的运算等知识点,读懂材料,掌握分式的运算法则是解题关键.21、见解析【分析】先利用“配方法”分解因式,然后根据平方差公式因式分解即可解答.【详解】解:a4+4=(a4+4a2+4)﹣4a2=(a2+2)2﹣(2a)2=(a2+2+2a)(a2+2﹣2a)=(a2+2a+2)(a2﹣2a+2).【点睛】本题考查了配方法分解因式,公式法分解因式,掌握因式分解的方法是解题的关键.22、(1)C(3,1)(2)见解析(3)=.【分析】(1)作CD⊥x轴,根据题意证明△ABO≌△BCD即可求解;(2)过B点作GH⊥x轴,作AG⊥GH,CH⊥GH,同理可证△ABG≌△BCH,求出C点坐标,从而求出直线EC解析式,得到F点坐标即可求解;(3)根据题意作图,可得四边形ABCD为正方形,由(2)同理求出C点坐标,同理求出D点坐标,即可表示出.【详解】(1)∴作CD⊥x轴,∵∴又∴又∴△ABO≌△BCD(AAS)∴BD=AO=2,CD=OB=1∴C(3,1);(2)过B点作GH⊥x轴,作AG⊥GH,CH⊥GH,∵,同(1)可证△ABG≌△BCH,∵∴BH=AG=BO=3,CH=BG=AO=2∴C(1,-3)∵∴EO=2求得直线EC的解析式为y=-x-2∴F(0,-2)∴OF=2则;(3)根据题意作图,∵,可得△ABF≌△BCF,由可得BF=AE=m,CF=BE=2,∴C(m-2,-m)∵两点关于直线的的对称点,∴四边形ABCD为正方形同理△CDG≌△BCF≌△ABF∴CG=BF=AE=m,DG=CF=BE=2,∴D(-2,-m+2)∴===.【点睛】此题主要考查一次函数与几何,解题的关键是熟知一次函数的图像与性质、等腰三角形的性质、全等三角形的判定与性质.23、(1)见解析;(2)5;(3)【分析】(1)首先分别以A,B为圆心,以线段AB长为半径为半径画弧,两弧的交点为C,最后连接AB,AC就行了;(2)以点E为中心,将△ACE逆时针旋转60°,则点C落在点B,点A落在点E′.连接AE′,CE′,当点E′、A、C在一条直线上时,AE有最大值.(3)首先以点B为中心,将△ABP逆时针旋转90°,则点A落在A′,点P落在P′,当A′、P′、P、C在一条直线上时,取得最小值,然后延长A′B,过点C作CD⊥A′B,利用勾股定理即可得解.【详解】(1)如图所示:(2)根据题意,以点E为中心,将△ACE逆时针旋转60°,则点C落在点B,点A落在点E′.连接AE′,CE′,当点E′、A、C在一条直线上时,AE有最大值,如图所示:∵E′B=AC,EE′=AE=AE′,,,∴AE的最大值为3+2=5;(3)以点B为中心,将△ABP逆时针旋转90°,则点A落在A′,点P落在P′,当A′、P′、P、C在一条直线上时,取得最小值,延长A′B,过点C作CD⊥A′B于D,如图所示:由题意,得∵A′B=AB=3,∠A′BA=90°,∠ABC=30°∴∠A′BC=120°∴∠CBD=60°∵BC=4∴BD=2,CD=∴A′C==故其最小值为.【点睛】此题主要考查旋转以及等边三角形的性质,解题关键是正确理解求解线段的最大值和最小值的条件.24、(1)①(0,5);②;(2)理由见解析;(3)周长=1,不会发生变化,证明见解析.【分析】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即可求解;②证明△AOP≌△FRE(AAS),则ER=AP=4,故点F(8,1),即可求解;(2)∠EOP=∠EPO,而∠EPH=∠EOC=90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因为AB∥OC,故∠APO=∠POC,即可求解;(3)证明△AOP≌△QOP(AAS)、△OCH≌△OQH(SAS),则CH=QH,即可求解.【详解】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+1,解得:a=5,故点E(0,5).故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线EF的表达式为:y=﹣x+5;(2)∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC,∴∠APO=∠OPH;(3)如图,过O作OQ⊥PH,垂足为Q.由(1)知∠APO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江综合知识模拟9
- 2024年离婚协议书范文
- 2024年合作协议书样本电子版
- 2024年私人建房合同协议书范本
- 2024年新施工合同范本
- 辽宁公务员面试模拟68
- 2014年2月21日广西铁路公安面试真题
- 学校校园消防安全知识培训
- 2024年标准产品代理合同模板
- 2024年昆明市车辆买卖合同
- 110Kv变电站二次电气部分设计
- 脑出血护理个案
- 《江西省普通高级中学基本办学条件标准(试行)》
- 甲醇锅炉资料
- 二氧化钛实验报告
- 英语特殊疑问句练习题(附答案)
- 历史学科课堂观察量表
- 重大危险源安全监理巡视检查记录表(共13页)
- 国家开放大学《计算机绘图(本)》章节测试参考答案
- 成都市全域地籍数据建库及宗地统一编码技术方案(全市招标稿)
- DB45∕T 2364-2021 公路路基监测技术规范
评论
0/150
提交评论