版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75º方向处 B.在5km处C.在南偏东15º方向5km处 D.在南偏东75º方向5km处2.如图,B、E,C,F在同一条直线上,若AB=DE,∠B=∠DEF,添加下列一个条件后,能用“SAS”证明△ABC≌△DEF,则这条件是()A.∠A=∠D B.∠ABC=∠F C.BE=CF D.AC=DF3.已知一组数据,,,,的众数是,那么这组数据的方差是()A. B. C. D.4.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(-2,-3) B.(2,-3) C.(-3,2) D.(2,3)5.如图,在△PAB中,∠A=∠B,D、E、F分别是边PA、PB、AB上的点,且AD=BF,BE=AF.若∠DFE=34°,则∠P的度数为()A.112° B.120° C.146° D.150°6.下列说法正确的是()A.计算两个班同学数学成绩的平均分,可以用两个班的平均分除以2即可;B.10,9,10,12,11,12这组数据的众数是10;C.若,,,…,的平均数是,那么D.若,,,…,的方差是,那么,,,…方差是.7.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()A.1个 B.2个 C.3个 D.4个8.若点,在直线上,且,则该直线经过象限是()A.一、二、三 B.一、二、四 C.二、三、四 D.一、三、四9.某工程队在城区内铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“……”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“……”表示的缺失的条件应补为()A.每天比原计划多铺设12米,结果延期20天完成B.每天比原计划少铺设12米,结果延期20天完成C.每天比原计划多铺设12米,结果提前20天完成D.每天比原计划少铺设12米,结果提前20天完成10.下列各分式中,最简分式是()A. B. C. D.二、填空题(每小题3分,共24分)11.在等腰中,若,则__________度.12.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.则过角尺顶点C的射线OC便是∠AOB的平分线。这样做的依据是_______.13.如果是一个完全平方式,则的值是_________.14.如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________.15.如图,已知线段,是的中点,直线经过点,,点是直线上一点,当为直角三角形时,则_____.16.分式有意义的条件是______.17.已知点M关于y轴的对称点为N(a,b),则a+b的值是______.18.若的3倍与2的差是负数,则可列出不等式______.三、解答题(共66分)19.(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.20.(6分)以下是小嘉化简代数式的过程.解:原式……①……②……③(1)小嘉的解答过程在第_____步开始出错,出错的原因是_____________________;(2)请你帮助小嘉写出正确的解答过程,并计算当时代数式的值.21.(6分)已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.22.(8分)如图,在平面直角坐标系中,线段的两个端点的坐标分别为.(1)画出线段关于轴对称的对应线段,再画出线段关于轴对称的对应线段;(2)点的坐标为_________;(3)若此平面直角坐标系中有一点,先找出点关于轴对称的对应点,再找出点关于轴对称的对应点,则点的坐标为_______;23.(8分)如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)24.(8分)如图,平行四边形的对角线,相交于点,点在上,且.求证:.25.(10分)在如图所示的方格纸中,每个方格都是边长为1个单位的小正方形,的三个顶点都在格点上(每个小正方形的顶点叫做格点).(1)画出关于直线l对称的图形.(2)画出关于点O中心对称的图形,并标出的对称点.(3)求出线段的长度,写出过程.26.(10分)如图,在ΔABC与ΔDCB中,AC与BD交于点E,且,∠A=∠D,AB=DC.求证:ΔABE≌ΔDCE
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据方向角的定义解答即可.【详解】观察图形可得,目标A在南偏东75°方向5km处,故选D.【点睛】本题考查了方向角的定义,正确理解方向角的意义是解题关键.2、C【分析】根据“SAS”证明两个三角形全等,已知AB=DE,∠B=∠DEF,只需要BC=EF,即BE=CF,即可求解.【详解】用“SAS”证明△ABC≌△DEF∵AB=DE,∠B=∠DEF∴BC=EF∴BE=CF故选:C【点睛】本题考查了用“SAS”证明三角形全等.3、A【分析】由题意根据众数的概念,确定x的值,再求该组数据的方差即可.【详解】解:因为一组数据10,1,9,x,2的众数是1,所以x=1.于是这组数据为10,1,9,1,2.该组数据的平均数为:(10+1+9+1+2)=1,方差S2=[(10-1)2+(1-1)2+(9-1)2+(1-1)2+(2-1)2]==2.1.故选:A.【点睛】本题考查平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.4、A【分析】在平面直角坐标系中,关于x轴对称的点横坐标不变,纵坐标变为相反数.【详解】解:点P(-2,3)关于x轴对称的点的坐标(-2,-3).故选A.5、A【分析】根据等边对等角得到∠A=∠B,证得△ADF≌△BFE,得∠ADF=∠BFE,由三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,
∴∠A=∠B,
在△ADF和△BFE中,∴△ADF≌△BFE(SAS),
∴∠ADF=∠BFE,
∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,
∴∠A=∠DFE=34°,∴∠B=34°,
∴∠P=180°-∠A-∠B=112°,
故选:A.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.6、C【分析】根据平均数,众数,方差的定义和意义,逐一判断选项,即可求解.【详解】∵两个班同学数学成绩的平均分=两个班总成绩÷两个班级总人数,∴A错误,∵10,9,10,12,11,12这组数据的众数是10和12,∴B错误,∵,,,…,的平均数是,那么,∴C正确,∵若,,,…,的方差是,那么,,,…方差是,∴D错误,故选C.【点睛】本题主要考查平均数,众数,方差的定义和意义,掌握众数的定义,平均数,方差的定义和公式,是解题的关键.7、D【分析】根据轴对称图形的概念求解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【详解】解:4个图形都是轴对称图形.故选D.【点睛】本题考查了轴对称图形的定义.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、B【分析】根据两个点的横坐标、纵坐标的大小关系,得出y随x的增大而减小,进而得出k的取值范围,再根据k、b的符号,确定图象所过的象限即可.【详解】解:∵a<a+1,且y1>y2,
∴y随x的增大而减小,
因此k<0,
当k<0,b=2>0时,一次函数的图象过一、二、四象限,
故选:B.【点睛】本题考查一次函数的图象和性质,掌握一次函数的增减性是正确解答的前提.9、C【分析】由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设12米,结果提前20天完成.此题得解.【详解】解:∵利用工作时间列出方程:,∴缺失的条件为:每天比原计划多铺设12米,结果提前20天完成.故选:C.【点睛】本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.10、C【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【详解】=,不是最简分式;=y-x,不是最简分式;是最简分式;==,不是最简分式.故选C.【点睛】此题主要考查了最简分式的概念,看分式的分子分母有没有能约分的公因式是解题关键.二、填空题(每小题3分,共24分)11、40°或70°或100°.【分析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.【详解】(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°-∠A-∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C=(180°-∠A)=70°;故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能进行分类讨论,并求出各种情况的时∠B的度数是解此题的关键.12、SSS证明△COM≌△CON,全等三角形对应角相等【分析】由三边相等得△COM≌△CON,再根据全等三角形对应角相等得出∠AOC=∠BOC.【详解】由图可知,CM=CN,又OM=ON,OC为公共边,∴△COM≌△CON,∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故答案为:SSS证明△COM≌△CON,全等三角形对应角相等.【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.13、1或-1【分析】首末两项是2x和3这两个数的平方,那么中间一项为加上或减去2x和3积的2倍.【详解】解:∵是一个完全平方式,
∴此式是2x与3和的平方,即可得出-a的值,
∴(2x±3)2=4x2±1x+9,
∴-a=±1,
∴a=±1.
故答案为:1或-1.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.14、1【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此即可求解.【详解】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵点P关于OA的对称点为C,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=1,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=1.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=1.【点睛】此题主要考查轴对称--最短路线问题,综合运用了等边三角形的知识.正确作出图形,理解△PMN周长最小的条件是解题的关键.15、2或或.【分析】分、、三种情况,根据直角三角形的性质、勾股定理计算即可.【详解】解:如图:∵,∴当时,,当时,∵,∴,∴,当时,∵,∴,故答案为2或或.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.16、【分析】根据分式有意义,分母不等于0列式计算即可得解.【详解】根据题意得:,解得:x≠1;故答案为:x≠1.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解答本题的关键.17、-1【分析】直接利用关于y轴对称点的性质:纵坐标不变,横坐标互为相反数,求出a,b的值,即可求解.【详解】解:根据两点关于y轴对称,则横坐标互为相反数,纵坐标不变,得
a=-3,b=-2,
∴a+b=-1.
故答案为:-1.【点睛】本题考查关于y轴对称点的性质,正确得出a,b的值是解题关键.18、【分析】根据题意即可列出不等式.【详解】根据题意得故答案为:.【点睛】此题主要考查列不等式,解题的关键是根据题意找到不等关系.三、解答题(共66分)19、解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)甲、乙单位购买本次足球赛门票分别为500张、200张.【分析】(1)根据题意可直接写出用x表示的总费用表达式;(2)根据方案一与方案二的函数关系式分类讨论;(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方案二:①a不超过100;②a超过100两种情况讨论a取值的合理性.从而确定求甲、乙两单位各购买门票数.【详解】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤100或b>100.①b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;②当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意答:甲、乙单位购买本次足球赛门票分别为500张、200张.20、(1)②;去括号时-y2没变号;(2)解答过程见解析,代数式化简为3y2-4xy,值为1【分析】(1)依据完全平方公式、平方差公式、去括号法则、合并同类项法则进行判断即可;
(2)依据去括号法则、合并同类项法则进行化简,然后将4x=3y代入,最后,再合并同类项即可.【详解】解:(1)②出错,原因:去括号时-y2没变号;
故答案为:②;去括号时-y2没变号.
(2)正确解答过程:
原式=(x2-4xy+4y2)-(x2-y2)-2y2,
=x2-4xy+4y2-x2+y2-2y2,
=3y2-4xy.
当4x=3y时,原式3y2-3y2=1.【点睛】本题主要考查的是整式的混合运算,熟练掌握相关法则是解题的关键.21、(1)证明见解析(2)∠MBC=∠F+∠FEC,证明见解析【解析】(1)根据三角形外角的性质,可得出∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,再根据∠A=∠ABC,即可得出答案;(2)由BM∥AC,得出∠MBA=∠A,∠A=∠ABC,得出∠MBC=∠MBA+∠ABC=2∠A,结合(1)的结论证得答案即可.【详解】(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.22、(1)详见解析;(2);(3)【分析】(1)根据轴对称图形的作图方法画对称线段即可;(2)根据图像可得点坐标;(3)根据关于x轴对称的特点可得点坐标,再根据关于y轴对称的特点可得点坐标.【详解】解:(1)如图,线段,线段即为所求.(2)由图得(3)由点关于轴对称,横坐标不变,纵坐标互为相反数,可得对应点,由关于轴对称,纵坐标不变,横坐标互为相反数可得其对应点.所以点的坐标为.【点睛】本题考查了平面直角坐标系中的轴对称,熟练掌握关于x轴和y轴的对称特点是解题的关键.23、(1)∠AFE=60°;(2)见解析;(3)【分析】(1)通过证明得到对应角相等,等量代换推导出;(2)由(1)得到,则在中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明和全等,利用对应边相等,等量代换得到比值.(通过将顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在和中,,∴(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《正弦量的基本概念》课件
- 《多层厂房设计》课件
- 《GIS程序设计》课件
- 天津市 二手房合同范本
- 2025年许昌道路货运输从业资格证模拟考试题库
- 2025年黄冈道路运输从业人员从业资格考试
- 2025年马鞍山货运从业资格模拟考
- 2025年三门峡道路运输从业资格证考试题和答案
- 2025年牡丹江年货运从业资格证考试从业从业资格资格题库及答案
- 2025年日喀则货运模拟考试
- 浙江省嘉兴市2023-2024学年八年级上学期期末英语试题
- 水泵维护保养方案
- 库存管理中的供应与需求平衡
- 空表机械加工工艺过程卡片-工序卡片-工序附图
- 信息化作战平台
- 有机硅合成革行业报告
- 个人劳动防护用品的使用和维护安全培训课件
- 城市营销方案书
- 9205-2015版铁路工程试验报告表
- 《森林病虫害防治》课件
- 辽宁省沈阳市铁西区2023-2024学年七年级上学期期末考试英语试题(含听力)
评论
0/150
提交评论