2022年河北省衡水市数学八年级第一学期期末质量检测试题含解析_第1页
2022年河北省衡水市数学八年级第一学期期末质量检测试题含解析_第2页
2022年河北省衡水市数学八年级第一学期期末质量检测试题含解析_第3页
2022年河北省衡水市数学八年级第一学期期末质量检测试题含解析_第4页
2022年河北省衡水市数学八年级第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.的计算结果是()A. B. C.0 D.12.若实数满足,则的值是()A. B.2 C.0 D.13.“高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是()A. B. C. D.4.下列各组数,能够作为直角三角形的三边长的是()A.2,3,4 B.4,5,7 C.0.5,1.2,1.3 D.12,36,395.下列图形中,具有稳定性的是()A.正方形 B.长方形 C.三角形 D.平行四边形6.在平行四边形中,,,,则平行四边形的面积等于()A. B.4 C. D.67.要使分式有意义,则x的取值范围是()A. B. C. D.8.如图,中,,,,在上,,在上,则的度数是()A. B. C. D.9.下列二次根式中与不是同类二次根式的是()A. B. C. D.10.下列运算正确的是()A.a2+a3=2a5 B.a6÷a2=a3C.a2•a3=a5 D.(2ab2)3=6a3b611.下列各数是无理数的是()A.227 B.38 C.0.41441441412.下列二次根式中是最简二次根式的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图所示,于点,且,,若,则___.14.如图,直线,直角三角板的直角顶点落在直线上,若,则等于_______.15.我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[1.99]=1.(1)=_____;(2)若[1+,则x的取值范围是_____.16.如图,在中,,点、在的延长线上,是上一点,且,是上一点,且.若,则的大小为__________度.17.已知P(a,b),且ab<0,则点P在第_________象限.18.化简的结果为__.三、解答题(共78分)19.(8分)如图,在等腰中,,点在线段上运动(不与重合),连结,作,交线段于点.(1)当时,=°;点从点向点运动时,逐渐变(填“大”或“小”);(2)当等于多少时,,请说明理由;(3)在点的运动过程中,的形状也在改变,判断当等于多少度时,是等腰三角形.20.(8分)某车队要把4000吨货物运到灾区(方案制定后,每天的运货量不变).(1)设每天运输的货物吨数n(单位:吨),求需要的天数;(2)由于到灾区的道路受阻,实际每天比原计划少运20%,因此推迟1天完成任务,求原计划完成任务的天数.21.(8分)要在某河道建一座水泵站P,分别向河的同一侧甲村A和乙村B送水,经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图),两村的坐标分别为A(1,-2),B(9,-6).(1)若要求水泵站P距离A村最近,则P的坐标为____________;(2)若从节约经费考虑,水泵站P建在距离大桥O多远的地方可使所用输水管最短?(3)若水泵站P建在距离大桥O多远的地方,可使它到甲乙两村的距离相等?22.(10分)在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.23.(10分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与指挥官的一段对话:记者:你们是用天完成米长的大坝加固任务的,真了不起!指挥官:我们加固米后,采用新的加固模式,这样每天加固长度是原来的倍.通过对话,请你求出该地驻军原来每天加固多少米?24.(10分)计算:3a3b·(-1ab)+(-3a1b)1.25.(12分)如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.26.已知:如图,在平面直角坐标系中,为坐标原点,,,过点画交直线于(即点的纵坐标始终为),连接.(1)求的长.(2)若为等腰直角三角形,求的值.(3)在(2)的条件下求所在直线的表达式.(4)用的代数式表示的面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】根据非零数的零次幂等于1解答即可.【详解】=1.故选D.【点睛】本题考查了零次幂的意义,熟练掌握非零数的零次幂等于1是解答本题的关键.2、A【分析】根据题意由,变形可得,根据非负性进行计算可得答案.【详解】解:由,变形可得,根据非负性可得:解得:所以.故选:A.【点睛】本题考查平方和算术平方根的非负性,注意掌握和运用平方和算术平方根的非负性是解题的关键.3、D【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.【详解】解:根据轴对称图形的定义,只有D选项图形是轴对称图形.故选:D【点睛】本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.4、C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解:A、32+22≠42,不能构成直角三角形,故选项错误;B、42+52≠72,不能构成直角三角形,故选项错误;C、0.52+1.22=1.32,能构成直角三角形,故选项正确;D、122+362≠392,不能构成直角三角形,故选项错误.故选C.考点:勾股定理的逆定理.5、C【分析】根据三角形具有稳定性解答.【详解】解:三角形,正方形,平行四边形,长方形中只有三角形具有稳定性.

故选C.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.6、A【分析】根据题意作图,作AE⊥BC,根据,AB=求出平行四边形的高AE,再根据平行四边形的面积公式进行求解.【详解】如图,作AE⊥BC∵,AB=∴AE=AB=,∴平行四边形的面积=BC×AE=2×=2故选A.【点睛】此题主要考查平行四边形的面积,解题的关键是根据题意作图,根据含的直角三角形的特点即可求解.7、A【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得x-1≠0,解得:x≠1,故选A.8、B【分析】先根据直角三角形两锐角互余求出,从而可知是等边三角形,再由等边三角形的性质可求出,从而可得,最后根据三角形的外角性质即可得.【详解】是等边三角形,故选:B.【点睛】本题是一道较为简单的综合题,考查了直角三角形的性质、等边三角形的性质、三角形的外角性质等知识点,熟记并灵活运用各性质是解题关键.9、D【分析】根据同类二次根式的概念进行分析排除,即几个最简二次根式的被开方数相同,则它们是同类二次根式.【详解】A、与是同类二次根式,选项不符合题意;B、是同类二次根式,选项不符合题意;C、是同类二次根式,选项不符合题意;D、是不同类二次根式,选项符合题意;故选:D.【点睛】此题考查了同类二次根式的概念,关键是能够正确把二次根式化成最简二次根式.10、C【分析】原式各项计算得到结果,即可作出判断.【详解】A.原式不能合并,错误;B.原式=a4,错误;C.原式=a5,正确;D.原式=8a3b6,错误,故选C.11、D【解析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可判定选择项.【详解】解:A、227是有理数,故选项错误;

B、38=2是有理数,故选项错误;

C、C.0.414414414是有理数,故选项错误;

D、32=42【点睛】此题主要考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.12、B【分析】根据最简二次根式的定义判断即可.【详解】解:A、,不是最简二次根式,本选项错误;B、是最简二次根式,本选项正确;C、不是最简二次根式,本选项错误;D、不是最简二次根式,本选项错误;故选B.【点睛】此题考查了最简二次根式,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.二、填空题(每题4分,共24分)13、27°【分析】连接AE,先证Rt△ABD≌Rt△CBD,得出四边形ABCE是菱形,根据菱形的性质可推导得到∠E的大小.【详解】如下图,连接AE∵BE⊥AC,∴∠ADB=∠BDC=90°∴△ABD和△CBD是直角三角形在Rt△ABD和Rt△CBD中∴Rt△ABD≌Rt△CBD∴AD=DC∵BD=DE∴在四边形ABCE中,对角线垂直且平分∴四边形ABCE是菱形∵∠ABC=54°∴∠ABD=∠CED=27°故答案为:27°【点睛】本题考查菱形的证明和性质的运用,解题关键是先连接AE,然后利用证Rt△ABD≌Rt△CBD推导菱形.14、【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.15、1【分析】(1)由≈1.414,及题中所给信息,可得答案;(2)先解出的取值范围后得出x的取值范围.【详解】解:(1)≈1.414,由题中所给信息,可得=1;(2)由题意得:6≤<7,可得:1≤<4,可得:9≤x<16.【点睛】本题主要考查新定义及不等式的性质,找出规律是解题的关键16、10【解析】根据三角形外角的性质,结合已知,得∠E=∠CDG,同理,,∠CDG=∠ACB,,得出∠ACB=∠B,利用三角形内角和180°,计算即得.【详解】∵DE=DF,CG=CD,∴∠E=∠EFD=∠CDG,∠CDG=∠CGD=∠ACB,又∵AB=AC,∴∠ACB=∠B=(180°-∠A)=(180°-100°)=40°,∴∠E=,故答案为:10°.【点睛】本题考查了等腰三角形的性质以及三角形外角的性质,解题的关键是灵活运用等腰三角形的性质和三角形外角的性质确定各角之间的关系.17、二,四【分析】先根据ab<0确定a、b的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab<0∴a>0,b<0或b>0,a<0∴点P在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.18、x-1【分析】根据分式的混合运算,可先算括号里面的,再把除化为乘法,约分即可.【详解】解:===故答案为:x-1.【点睛】本题考查分式的混合运算,掌握运算法则正确计算是解题关键.三、解答题(共78分)19、(1)35°,小;(2)当DC=3时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)根据三角形内角和定理得到∠BAD=35°,点从点向点运动时,∠BAD变大,三角形内角和定理即可得到答案;

(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;

(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】解:(1)∵∠B=40°,∠ADB=105°,

∴∠BAD=180°-∠B-∠ADB=180°-105°-40°=35°,

∵点从点向点运动时,∠BAD变大,且∠BDA=180°-40°-∠BAD∴逐渐变小(2)当DC=3时,△ABD≌△DCE,

理由:∵AB=AC,

∴∠C=∠B=40°,∴∠DEC+∠EDC=140°,

又∵∠ADE=40°,

∴∠ADB+∠EDC=140°,

∴∠ADB=∠DEC,

又∵AB=DC=3,

在△ABD和△DCE中,∴△ABD≌△DCE(AAS);

(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,

当DA=DE时,∠DAE=∠DEA=70°,

∴∠BDA=∠DAE+∠C=70°+40°=110°;

当AD=AE时,∠AED=∠ADE=40°,

∴∠DAE=100°,

此时,点D与点B重合,不合题意;

当EA=ED时,∠EAD=∠ADE=40°,

∴∠AED=100°,

∴EDC=∠AED-∠C=60°,

∴∠BDA=180°-40°-60°=80°

综上所述,当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.20、(1)t=(2)原计划4天完成【分析】(1)根据每天运量×天数=总运量即可列出函数关系式;(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.【详解】解:(1)设需要的天数为t,∵每天运量×天数=总运量,∴nt=4000,∴t=;(2)设原计划x天完成,根据题意得:解得:x=4经检验:x=4是原方程的根.答:原计划4天完成.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21、(1)(1,0);(2)P点坐标为(3,0)即水泵站P建在距离大桥O3个单位长度的地方可使所用输水管最短;(3)P点坐标为(7,0)即水泵站P建在距离大桥O7个单位长度的地方可使它到甲乙两村的距离相等【分析】(1)依数学原理“点到直线的距离,垂线段最短”分析解题;(2)依数学原理“两点之间线段最短”分析解题;(3)依数学原理“垂直平分线的性质”分析解题.【详解】(1)依数学原理“点到直线的距离,垂线段最短”解题,作AP⊥x轴于点P,即为所求,∵A点坐标为(1,-2),∴P点坐标为(1,0);(2)依数学原理“两点之间线段最短”解题,由题可知,即求最短,作点A关于x轴的对称点,连接交x轴于点P,此时最短距离为的长度.∵A(1,-2),∴(1,2),设,代入、B两点坐标,可得,解得,∴直线的表达式为,当y=0时,x=3,∴P点坐标为(3,0)即水泵站P建在距离大桥O3个单位长度的地方可使所用输水管最短;(3)依数学原理“垂直平分线的性质”解题.作线段AB的垂直平分线,交x轴于点P,此时PA=PB.依中点坐标公式可得线段AB的中点G的坐标为(5,-4),由A、B两点坐标可得直线AB的表达式为y=-0.5x-1.5,∵PG⊥AB,∴设直线PG的表达式为y=2x+b,代入G点坐标,可得y=2x-14,当y=0时x=7,∴P点坐标为(7,0)即水泵站P建在距离大桥O7个单位长度的地方可使它到甲乙两村的距离相等.【点睛】本题主要考查最短路径问题,涉及的知识点主要有:两点之间,线段最短;点到直线的距离;垂直平分线的性质;解这类题型一定要熟练地掌握最短路径所涉及的相关知识点以及对应的运用.22、见解析【分析】(1)根据∠ACB=90°,证∠CAD=∠BCF,再利用BF∥AC,证∠ACB=∠CBF=90°,然后利用ASA即可证明△ACD≌△CBF.(2)先根据ASA判定△ACD≌△CBF得到BF=BD,再根据角度之间的数量关系求出∠ABC=∠ABF,即BA是∠FBD的平分线,从而利用等腰三角形三线合一的性质求证即可.【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,∵CE⊥AD,∴∠CAD=∠BCF,∵BF∥AC,∴∠FBA=∠CAB=45°∴∠ACB=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF;(2)证明:∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC,BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF,∴CD=BF.∵CD=BD=BC,∴BF=BD.∴△BFD为等腰直角三角形.∵∠ACB=90°,CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF,即BA是∠FBD的平分线.∴BA是FD边上的高线,BA又是边FD的中线,即AB垂直平分DF.考点:全等三角形的判定与性质;线段垂直平分线的性质.23、该地驻军原来每天加固米.【分析】设该地驻军原来每天加固米,根据“用天完成米长的大坝加固任务”,列出分式方程,即可求解.【详解】设该地驻军原来每天加固米,根据题意,得:,解得:,经检验:是原方程的解,符合题意.答:该地驻军原来每天加固米.【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出分式方程,是解题的关键.24、【分析】原式利用单项式乘以单项式,以及幂的乘方与积的乘方运算法则计算即可求出值.【详解】原式==【点睛】此题考查整式的混合运算,熟练掌握运算法则是解题的关键.25、(1)证明见解析;(1)2;(3)CD1+CE1=BC1,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.

(1)先求出∠CDA=∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.

(3)方法1、同(1)的方法即可得出结论;方法1、先判断出CD1+CE1=1(AP1+CP1),再判断出CD1+CE1=1AC1.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(1)如图1,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=∠ADE=×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD===2.(3)CD1、CE1、BC1之间的数量关系为:CD1+CE1=BC1,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=42°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=42°,∴∠BEC=∠BEA+∠AED=42°+42°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC1=BE1+CE1.∴BC1=CD1+CE1.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论