山西省左玉县2022年数学九年级第一学期期末联考模拟试题含解析_第1页
山西省左玉县2022年数学九年级第一学期期末联考模拟试题含解析_第2页
山西省左玉县2022年数学九年级第一学期期末联考模拟试题含解析_第3页
山西省左玉县2022年数学九年级第一学期期末联考模拟试题含解析_第4页
山西省左玉县2022年数学九年级第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在单词mathematics(数学)中任意选择一个字母,字母为“m”的概率为()A. B. C. D.2.如图,已知点在反比例函数上,轴,垂足为点,且的面积为,则的值为()A. B. C. D.3.下列几何图形中,是中心对称图形但不是轴对称图形的是()A.圆 B.正方形 C.矩形 D.平行四边形4.以下列长度的线段为边,可以作一个三角形的是()A. B. C. D.5.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数是()A.140° B.130° C.120° D.110°6.若关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是()A.k≠0 B.k>4 C.k<4 D.k<4且k≠07.图中三视图所对应的直观图是()A. B. C. D.8.若反比例函数的图象在每一条曲线上都随的增大而增大,则的取值范围是()A. B. C. D.9.如图,已知△ABC中,∠C=90°,AC=BC,把△ABC绕点A逆时针旋转60°得到△AB'C',连接C'B,则∠ABC'的度数是()A.45° B.30° C.20° D.15°10.抛物线y=x2+2x-2最低点坐标是()A.(2,-2) B.(1,-2) C.(1,-3) D.(-1,-3)11.《九章算术》是我国古代第一部自成体系的数学专著,书中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深两寸,锯道长八寸,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深2寸(ED=2寸),锯道长8寸”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算圆形木材的直径AC是()A.5寸 B.8寸 C.10寸 D.12寸12.如图所示的几何体,它的左视图是()A. B. C. D.二、填空题(每题4分,共24分)13.反比例函数y=的图象分布在第一、三象限内,则k的取值范围是______.14.如图,在△ABC中,D、E、F分别在AB、AC、BC上,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为_____.15.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.16.如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,点,分别落在点,处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,依次进行下去,……,若点,,则点B2016的坐标为______.17.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.18.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.三、解答题(共78分)19.(8分)已知二次函数y=2x2+4x+3,当﹣2≤x≤﹣1时,求函数y的最小值和最大值,如图是小明同学的解答过程.你认为他做得正确吗?如果正确,请说明解答依据,如果不正确,请写出你得解答过程.20.(8分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?21.(8分)如图,点E在的中线BD上,.(1)求证:;(2)求证:.22.(10分)四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?23.(10分)如图,梯形ABCD中,,点在上,连与的延长线交于点G.(1)求证:;(2)当点F是BC的中点时,过F作交于点,若,求的长.24.(10分)如图①,矩形中,,,将绕点从处开始按顺时针方向旋转,交边(或)于点,交边(或)于点.当旋转至处时,的旋转随即停止.(1)特殊情形:如图②,发现当过点时,也恰好过点,此时是否与相似?并说明理由;(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设时,的面积为,试用含的代数式表示;①在旋转过程中,若时,求对应的的面积;②在旋转过程中,当的面积为4.2时,求对应的的值.25.(12分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.26.请阅读下面材料:问题:已知方程x1+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的一半.解:设所求方程的根为y,y=,所以x=1y把x=1y代入已知方程,得(1y)1+1y-3=0化简,得4y1+1y-3=0故所求方程为4y1+1y-3=0这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”解决下列问题:(1)已知方程1x1-x-15=0,求一个关于y的一元二次方程,使它的根是已知方程根的相反数,则所求方程为:_________.(1)已知方程ax1+bx+c=0(a≠0)有两个不相等的实数根,求一个关于y的一元二次方程,使它的根比已知方程根的相反数的一半多1.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据概率公式进行计算即可.【详解】在单词“mathematics”中,共11个字母,其中有2个字母“m”,故从中任意选择一个字母,这个字母为“m”的概率是.故选:B.【点睛】本题考查概率的计算,熟记概率公式是解题关键.2、C【分析】根据反比例函数中的比例系数k的几何意义即可得出答案.【详解】∵点在反比例函数,的面积为故选:C.【点睛】本题主要考查反比例函数中的比例系数k的几何意义,掌握反比例函数中的比例系数k的几何意义是解题的关键.3、D【分析】根据中心对称图形和轴对称图形的定义逐一判断即可.【详解】A.圆是中心对称图形,也是轴对称图形,故本选项不符合题意;B.正方形是中心对称图形,也是轴对称图形,故本选项不符合题意;C.矩形是中心对称图形,也是轴对称图形,故本选项不符合题意;D.平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意.故选D.【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的定义是解决此题的关键.4、B【分析】根据三角形的三边关系定理逐项判断即可.【详解】A、,不满足三角形的三边关系定理,此项不符题意B、,满足三角形的三边关系定理,此项符合题意C、,不满足三角形的三边关系定理,此项不符题意D、,不满足三角形的三边关系定理,此项不符题意故选:B.【点睛】本题考查了三角形的三边关系定理:任意两边之和大于第三边,熟记定理是解题关键.5、B【分析】根据圆周角定理求出∠ACB,根据三角形内角和定理求出∠B,求出∠D+∠B=180°,再代入求出即可.【详解】∵AB是半圆O的直径,∴∠ACB=90°,∵∠BAC=40°,∴∠B=180°﹣∠ACB﹣∠BAC=50°,∵A、B、C、D四点共圆,∴∠D+∠B=180°,∴∠D=130°,故选:B.【点睛】此题主要考查圆周角定理以及圆内接四边形的性质,熟练掌握,即可解题.6、C【解析】根据判别式的意义得到△=(-1)2-1k>0,然后解不等式即可.【详解】∵关于x的一元二次方程有两个不相等的实数根,

∴解得:k<1.

故答案为:C.【点睛】本题考查的知识点是一元二次方程根的情况与判别式△的关系,解题关键是熟记一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.7、C【分析】试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.考点:由三视图判断几何体.8、B【分析】根据反比例函数的性质,可求k的取值范围.【详解】解:∵反比例函数图象的每一条曲线上,y都随x的增大而增大,

∴k−2<0,

∴k<2

故选B.【点睛】本题考查了反比例函数的性质,熟练掌握当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.9、B【分析】连接BB′,延长BC′交AB′于点M;证明△ABC′≌△B′BC′,得到∠MBB′=∠MBA=30°.【详解】如图,连接BB′,延长BC′交AB′于点M;由题意得:∠BAB′=60°,BA=B′A,∴△ABB′为等边三角形,∴∠ABB′=60°,AB=B′B;在△ABC′与△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠MBB′=∠MBA=30°,即∠ABC'=30°;故选:B.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形是解题的关键.10、D【分析】利用配方法把抛物线的一般式转化为顶点式,再写出顶点坐标即可.【详解】∵,且,

∴最低点(顶点)坐标是.

故选:D.【点睛】此题考查利用顶点式求函数的顶点坐标,注意根据函数的特点灵活运用适当的方法解决问题.11、C【分析】设⊙O的半径为r,在Rt△AEO中,AE=4,OE=r-2,OA=r,则有r2=42+(r-2)2,解方程即可.【详解】设⊙O的半径为r,在Rt△AEO中,AE=4,OE=r﹣2,OA=r,则有r2=42+(r﹣2)2,解得r=5,∴⊙O的直径为10寸,故选C.【点睛】本题主要考查垂径定理、勾股定理等知识,解决本题的关键是学会利用利用勾股定理构造方程进行求解.12、D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.二、填空题(每题4分,共24分)13、k>0【详解】∵反比例函数的图象在一、三象限,∴k>0,14、1【分析】根据平行线分线段成比例定理得到,证明△AED∽△ECF,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:∵DE∥BC,∴,∠AED=∠C,∵EF∥AB,∴∠CEF=∠A,又∠AED=∠C,∴△AED∽△ECF,∴,即,解得,DE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质、平行线分线段成比例定理,掌握相似三角形的判定和性质是解题的关键.15、2【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得:k=9a+7=7b+4=5c+2(k,a,b,c都是正整数)∴9a+7=5c+2,∴9a=5(c-1),∴a是5的倍数.不妨设a=5m(m为正整数),∴k=45m+7=7b+4,∴b=,∵b和m都是正整数,∴m的最小值为1.∴a=5m=2.故答案为:2.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.16、(6048,2)【分析】由题意可得,在直角三角形中,,,根据勾股定理可得,即可求得的周长为10,由此可得的横坐标为10,的横坐标为20,···由此即可求得点的坐标.【详解】在直角三角形中,,,由勾股定理可得:,的周长为:,∴的横坐标为:OA+AB1+B1C1=10,的横坐标为20,···∴.故答案为.【点睛】本题考查了点的坐标的变化规律,根据题意正确得出点的变化规律是解决问题的关键.17、1【解析】试题分析:根据题意可得圆心角的度数为:,则S==1.考点:扇形的面积计算.18、【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,

∴此扇形的弧长为=π.

故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.三、解答题(共78分)19、错误,见解析【分析】根据二次函数的性质和小明的做法,可以判断小明的做法是否正确,然后根据二次函数的性质即可解答本题.【详解】解:小明的做法是错误的,正确的做法如下:∵二次函数y=2x2+4x+1=2(x+1)2+1,∴该函数图象开口向上,该函数的对称轴是直线x=﹣1,当x=﹣1时取得最小值,最小值是1,∵﹣2≤x≤﹣1,∴当x=﹣2时取得最大值,此时y=1,当x=﹣1时取得最小值,最小值是y=1,由上可得,当﹣2≤x≤﹣1时,函数y的最小值是1,最大值是1.【点睛】本题考查二次函数的性质,关键在于熟记性质.20、(1)P(抽到数字为2)=;(2)不公平,理由见解析.【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析:(1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=,乙获胜的情况有2种,P=,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.21、(1)见解析;(2)见解析【分析】(1)由∠DAE=∠ABD,∠ADE=∠BDA,根据有两角对应相等的三角形相似,可得△ADE∽△BDA;(2)由点E在中线BD上,可得,又由∠CDE=∠BDC,根据两组对应边的比相等且夹角对应相等的两个三角形相似,即可得△CDE∽△BDC,继而证得∠DEC=∠ACB.【详解】解:证明:(1)∵∠DAE=∠ABD,∠ADE=∠BDA,

∴△ADE∽△BDA;(2)∵D是AC边上的中点,

∴AD=DC,∵△ADE∽△BDA∴,∴,又∵∠CDE=∠BDC,

∴△CDE∽△BDC,

∴∠DEC=∠ACB.【点睛】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22、(1)见解析(2)P(积为奇数)=【分析】(1)用树状图列举出2次不放回实验的所有可能情况即可;(2)看是奇数的情况占所有情况的多少即可.【详解】(1)(2)P(积为奇数)=23、(1)证明见解析;(2)2cm【分析】(1)根据梯形的性质,利用平行线的性质得到,然后由相似三角形的判定得到结论;(2)根据点F是BC的中点,可得△CDF≌△BGF,进而根据全等三角形的性质得到CD=BG,然后由中位线的性质求解即可.【详解】(1)证明:∵梯形,,∴,∴.(2)由(1),又是的中点,∴,∴又∵,,∴,得.∴,∴.【点睛】此题主要考查了相似三角形的性质与判定,全等三角形的性质与判定及中位线的性质,比较复杂,关键是灵活利用平行线的性质解题.24、(1)相似;(2)定值,;(3)①2,②.【分析】(1)根据“两角相等的两个三角形相似”即可得出答案;(2)由得出,又为定值,即可得出答案;(3)先设结合得出①将t=1代入中求解即可得出答案;②将s=4.2代入中求解即可得出答案.【详解】(1)相似理由:∵,,∴,又∵,∴;(2)在旋转过程中的值为定值,理由如下:过点作于点,∵,,∴,∴,∵四边形为矩形,∴四边形为矩形,∴∴即在旋转过程中,的值为定值,;(3)由(2)知:,∴,又∵,∴,,∴即:;①当时,的面积,②当时,∴解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论