版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,点C在弧ACB上,若∠OAB=20°,则∠ACB的度数为()A. B. C. D.2.已知一元二次方程,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根3.函数的图象如图所示,那么函数的图象大致是()A. B. C. D.4.如图,将绕点逆时针旋转,旋转角为,得到,这时点,,恰好在同一直线上,下列结论一定正确的是()A. B. C. D.5.方程的两根分别为()A.=-1,=2 B.=1,=2 C.=―l,=-2 D.=1,=-26.对于二次函数,下列说法不正确的是()A.其图象的对称轴为过且平行于轴的直线.B.其最小值为1.C.其图象与轴没有交点.D.当时,随的增大而增大.7.下列命题是真命题的是()A.在同圆或等圆中,等弧所对的圆周角相等B.平分弦的直径垂直于弦C.在同圆或等圆中,等弦所对的圆周角相等D.三角形外心是三条角平分线的交点8.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于()度.A.42 B.48 C.46 D.509.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.
B.
C.
D.110.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应(
)A.不小于4.8Ω B.不大于4.8Ω C.不小于14Ω D.不大于14Ω二、填空题(每小题3分,共24分)11.圆锥侧面积为32πcm2,底面半径为4cm,则圆锥的母线长为____cm.12.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为__________.13.如图,以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′的面积比是_____.14.数据﹣3,6,0,5的极差为_____.15.如图,四边形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若AP⊥DP,则BP的长为_____.16.若如果x:y=3:1,那么x:(x-y)的值为_______.17.一元二次方程(x+1)(x-3)=2x-5根的情况_______.(表述正确即可)18.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.三、解答题(共66分)19.(10分)某活动小组对函数的图象性质进行探究,请你也来参与(1)自变量的取值范围是______;(2)表中列出了、的一些对应值,则______;(3)依据表中数据画出了函数图象的一部分,请你把函数图象补充完整;01233003(4)就图象说明,当方程共有4个实数根时,的取值范围是______.20.(6分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE(Ⅰ)求证:AE是⊙O的切线;(Ⅱ)若∠DBC=30°,DE=1cm,求BD的长.21.(6分)已知:如图,是正方形的对角线上的两点,且.求证:四边形是菱形.22.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C;D();②⊙D的半径=(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为;(结果保留π)④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.23.(8分)如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)24.(8分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?25.(10分)如图,一次函数的图象与反比例函数的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.26.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度数.【详解】解:∵∠ACB=∠AOB,
而∠AOB=180°-2×20°=140°,
∴∠ACB=×140°=70°.
故选:C.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.2、A【详解】解:∵a=2,b=-5,c=3,∴△=b2-4ac=(-5)2-4×2×3=1>0,∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,熟记公式正确计算是解题关键,难度不大.3、D【解析】首先由反比例函数的图象位于第二、四象限,得出k<0,则-k>0,所以一次函数图象经过第二四象限且与y轴正半轴相交.【详解】解:反比例函数的图象在第二、四象限,函数的图象应经过第一、二、四象限.故选D.【点睛】本题考查的知识点:
(1)反比例函数的图象是双曲线,当k<0时,它的两个分支分别位于第二、四象限.
(2)一次函数y=kx+b的图象当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限.4、C【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【详解】∵将△ABC绕点A逆时针旋转,旋转角为α,
∴AB=AD,∠BAD=α,
∴∠B=
故选:C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.5、D【解析】(x-1)(x+1)=0,可化为:x-1=0或x+1=0,解得:x1=1,x1=-1.故选D6、D【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A、B、D三项,再根据抛物线的顶点和开口即可判断C项,进而可得答案.【详解】解:,所以抛物线的对称轴是直线:x=3,顶点坐标是(3,1);A、其图象的对称轴为过且平行于轴的直线,说法正确,本选项不符合题意;B、其最小值为1,说法正确,本选项不符合题意;C、因为抛物线的顶点是(3,1),开口向上,所以其图象与轴没有交点,说法正确,本选项不符合题意;D、当时,随的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.7、A【分析】根据圆的性质,垂径定理,圆周角定理,三角形外心的定义,对照选项逐一分析即可.【详解】解:A.在同圆或等圆中,等弧所对的圆周角相等,是真命题;B.平分弦(弦不是直径)的直径垂直于弦,故原命题是假命题;C.在同圆或等圆中,等弦所对的圆周角相等,弦对着两个圆周角,故是假命题;D.三角形外心是三条边垂直平分线的交点,故是假命题;故选:A.【点睛】本题考查了圆的性质,垂径定理,圆周角定理,三角形外心的定义,掌握圆的性质和相关定理内容是解题的关键.8、A【分析】连接AB,由圆周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性质即可得出答案.【详解】解:连接AB,如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故选:A.【点睛】本题考查了圆周角定理以及直角三角形的性质;熟练掌握圆周角定理是解题的关键.9、C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C.【点睛】本题考查概率公式.10、A【分析】先由图象过点(1,6),求出U的值.再由蓄电池为电源的用电器限制电流不得超过10A,求出用电器的可变电阻的取值范围.【详解】解:由物理知识可知:I=UR,其中过点(1,6),故U=41,当I≤10时,由R≥4.1故选A.【点睛】本题考查反比例函数的图象特点:反比例函数y=kx的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0二、填空题(每小题3分,共24分)11、8【分析】根据扇形的面积公式计算即可.【详解】设圆锥的母线长为,则:,解得:,故答案为:.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.12、2【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用.13、1:1.【解析】根据位似变换的性质定义得到四边形ABCD与四边形A′B′C′D′相似,根据相似多边形的性质计算即可.【详解】解:以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′相似,相似比为1:2,∴四边形ABCD与四边形A′B′C′D′的面积比是1:1,故答案为:1:1.【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.14、1【分析】根据极差的定义直接得出结论.【详解】∵数据﹣3,6,0,5的最大值为6,最小值为﹣3,∴数据﹣3,6,0,5的极差为6﹣(﹣3)=1,故答案为1.【点睛】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.15、1或2【分析】设BP=x,则PC=3-x,根据平行线的性质可得∠B=90°,根据同角的余角相等可得∠CDP=∠APB,即可证明△CDP∽△BPA,根据相似三角形的性质列方程求出x的值即可得答案.【详解】设BP=x,则PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的长为1或2,故答案为:1或2【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解题的关键.16、【分析】根据x:y=3:1,则可设x=3a,y=a,即可计算x:(x-y)的值.【详解】解:设x=3a,y=a,则x:(x-y)=3a:(3a-a)=,故答案为:.【点睛】本题考查了比的性质,解题的关键是根据已有比例关系,设出x、y的值.17、有两个正根【分析】将原方程这里为一元二次方程的一般形式直接解方程或者求判别式与0的关系都可解题.【详解】解:(x+1)(x-3)=2x-5整理得:,即,配方得:,解得:,,∴该一元二次方程根的情况是有两个正跟;故答案为:有两个正根.【点睛】此题考查解一元二次方程,或者求判别式与根的个数的关系.18、1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.三、解答题(共66分)19、(1)全体实数;(2)1;(3)见解析;(4).【分析】(1)自变量没有限制,故自变量取值范围是全体实数;(2)把x=-2代入函数解释式即可得m的值;(3)描点、连线即可得到函数的图象;(4)根据函数的图象即可得到a的取值范围是-1<a<1.【详解】(1)自变量没有限制,故自变量取值范围是全体实数;(2)当x=-2时,∴m=1(3)如图所示(4)当方程共有4个实数根时,y轴左右两边应该都有2个交点,也就是图象x轴下半部分,此时-1<a<1;故答案为:(1)全体实数;(2)1;(3)见解析;(4).【点睛】本题考查了二次函数的图象和性质,正确的识别图象是解题的关键.20、(Ⅰ)见解析;(Ⅱ)4.【详解】(Ⅰ)证明:连结OA,∵DA平分∠BDE,∴∠ADE=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠ADE=∠OAD,∴OA∥CE,∵AE⊥CD,∴AE⊥OA,∴AE是⊙O的切线;(Ⅱ)∵BD是⊙O的直径,∴∠BCD=90°,∵∠DBC=30°,∴∠BDE=120°,∵DA平分∠BDE,∴∠ADE=∠ADO=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OD=BD,在Rt△AED中,DE=1,∠ADE=60°,∴AD==2,∴BD=4.21、见解析【解析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.22、(1)①答案见解析;②答案见解析;(2)①C(6,2);D(2,0);②;③;④相切,理由见解析.【分析】(1)①按题目的要求作图即可②根据圆心到A、B、C距离相等即可得出D点位置;(2)①C(6,2),弦AB,BC的垂直平分线的交点得出D(2,0);
②OA,OD长已知,△OAD中勾股定理求出⊙D的半径=2;
③求出∠ADC的度数,得弧ADC的周长,求出圆锥的底面半径,再求圆锥的底面的面积;
④△CDE中根据勾股定理的逆定理得∠DCE=90°,直线EC与⊙D相切.【详解】(1)①②如图所示:(2)①故答案为:C(6,2);D(2,0);②⊙D的半径=;故答案为:;③解:AC=,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长=圆锥的底面的半径=,圆锥的底面的面积为π()2=;故答案为:;
(4)直线EC与⊙D相切.
证明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直线EC与⊙D相切.【点睛】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,圆的圆心D是关键.23、作图见解析.【解析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.24、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【详解】解:(1)∵,∴抛物线的顶点式为.∴喷出的水流距水平面的最大高度是4米.(2)∵两抛物线的关于y轴对称∴左边抛物线的a=-1,顶点坐标为(-1,4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版船舶租赁合同样本3篇
- 2024年消防安全隐患排查及整改工程合同范本3篇
- 2024年油田应急救援队伍建设合同3篇
- 2024外墙保温材料节能环保技术合作购销合同协议2篇
- 2025木工承包合同模板
- 2025深圳劳动合同法
- 2025企业承揽合同版范本
- 2025民间物品抵押借款合同范本
- 2025工地水泥采购合同
- 2024年02月哈尔滨农村商业银行股份有限公司社会招考笔试历年参考题库附带答案详解
- 2024年资格考试-机动车检测维修工程师考试近5年真题附答案
- 大学生法律基础学习通超星期末考试答案章节答案2024年
- 2024年大学试题(文学)-外国文学考试近5年真题集锦(频考类试题)带答案
- 2024-2025学年三年级上册数学苏教版学考名师卷期末数学试卷
- 三级人工智能训练师(高级)职业技能等级认定考试题及答案
- 2024年新教材七年级语文上册古诗文默写(共100题含答案)
- 2024-2030年中国工业母机行业市场发展分析及发展前景与投资研究报告
- 城市燃气供应和储备站项目可行性研究报告模板-立项备案
- 浙江省杭州市学军中学2025届高三最后一模物理试题含解析
- 四川省成都市锦江区嘉祥外国语学校2024-2025学年九年级上学期入试考试数学试题
- 2024-2030年中国压电薄膜传感器行业市场发展趋势与前景展望战略分析报告
评论
0/150
提交评论