版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若一元二次方程的两根为和,则的值等于()A.1 B. C. D.2.若关于x的一元二次方程ax2+bx+6=0(a≠0)的其中一个解是x=1,则2018﹣a﹣b的值是()A.2022 B.2018 C.2017 D.20243.如图,若点M是y轴正半轴上的任意一点,过点M作PQ∥x轴,分别交函数y=(y>0)和y=(y>0)的图象于点P和Q,连接OP和OQ,则下列结论正确是()A.∠POQ不可能等于90°B.C.这两个函数的图象一定关于y轴对称D.△POQ的面积是4.下列标志中既是轴对称图形又是中心对称图形的是()A. B.C. D.5.已知抛物线y=﹣x2+bx+4经过(﹣2,﹣4),则b的值为()A.﹣2 B.﹣4 C.2 D.46.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④ B.①②③ C.①②④ D.②③④7.已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2019的值为()A.0 B.﹣1 C.1 D.(3)20198.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了().A.10° B.20° C.30° D.60°9.已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(
)A.
B.
C.
D.10.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变11.若是一元二次方程的两个实数根,则的值为()A. B. C. D.12.如图,矩形中,,,点为矩形内一动点,且满足,则线段的最小值为()A.5 B.1 C.2 D.3二、填空题(每题4分,共24分)13.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.14.如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是.15.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,将Rt△ABC绕点A逆时针旋转60°得到△ADE,则BC边扫过图形的面积为_____.16.如图,在正方形铁皮上剪下一个扇形和一个半径为的圆形,使之恰好围成一个圆锥,则圆锥的高为____.17.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=_____.18.圆内接正六边形的边长为6,则该正六边形的边心距为_____.三、解答题(共78分)19.(8分)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.20.(8分)若二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:x…-2-1012…y…0-2-204…(1)求该二次函数的表达式;(2)当y≥4时,求自变量x的取值范围.21.(8分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)求证:BF=EF;22.(10分)小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的销售价p(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示设第x天的日销售额为w(单位:元)(1)第11天的日销售额w为元;(2)观察图象,求当16≤x≤20时,日销售额w与上市时间x之间的函数关系式及w的最大值;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的销售价p元千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?23.(10分)解方程:(1)(配方法)(2)24.(10分)已知抛物线的解析式是y=x1﹣(k+1)x+1k﹣1.(1)求证:此抛物线与x轴必有两个不同的交点;(1)若抛物线与直线y=x+k1﹣1的一个交点在y轴上,求该二次函数的顶点坐标.25.(12分)现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序.(1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.26.如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.
参考答案一、选择题(每题4分,共48分)1、B【分析】先将一元二次方程变为一般式,然后根据根与系数的关系即可得出结论.【详解】解:将变形为根据根与系数的关系:故选B.【点睛】此题考查的是一元二次方程根与系数的关系,掌握两根之积等于是解决此题的关键.2、D【分析】根据题意将x=1代入原方程并整理得出,最后进一步整体代入求值即可.【详解】∵x=1是原方程的一个解,∴把x=1代入方程,得:,即.∴,故选:D.【点睛】本题主要考查了一元二次方程的解,熟练掌握相关概念是解题关键.3、D【分析】利用特例对A进行判断;根据反比例函数的几何意义得到S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则可对B、D进行判断;利用关于y轴对称的点的坐标特征对C进行判断.【详解】解:A、当k1=3,k2=﹣,若Q(﹣1,),P(3,),则∠POQ=90°,所以A选项错误;B、因为PQ∥x轴,则S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则=﹣,所以B选项错误;C、当k2=﹣k1时,这两个函数的图象一定关于y轴对称,所以C选项错误;D、S△POQ=S△OMQ+S△OMP=|k1|+|k2|,所以D选项正确.故选:D.【点睛】本题考查了反比例函数比例系数的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.4、C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,也不是中心对称图形.故错误;
C、是轴对称图形,也是中心对称图形.故正确;
D、是轴对称图形,不是中心对称图形.故错误.
故选:C.【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、C【分析】将点的坐标代入抛物线的解析式求解即可.【详解】因为抛物线y=﹣x1+bx+4经过(﹣1,﹣4),所以﹣4=﹣(﹣1)1﹣1b+4,解得:b=1.故选:C.【点睛】本题主要考查的是二次函数的性质.解题的关键是掌握二次函数的性质,明确抛物线经过的点的坐标满足抛物线的解析式是解题的关键.6、B【分析】根据已知及相似三角形的判定方法对各个结论进行分析从而得到最后答案.【详解】∵∠DBC=45°,DE⊥BC∴∠BDE=45°,∴BE=DE由勾股定理得,DB=BE,∵DE⊥BC,BF⊥CD∴∠BEH=∠DEC=90°∵∠BHE=∠DHF∴∠EBH=∠CDE∴△BEH≌△DEC∴∠BHE=∠C,BH=CD∵▱ABCD中∴∠C=∠A,AB=CD∴∠A=∠BHE,AB=BH∴正确的有①②③对于④无法证明.故选:B.【点睛】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.相似三角形的对应边成比例,对应角相等.7、B【分析】根据关于x轴对称的点,横坐标不变,纵坐标互为相反数的概念,求出P1P2的坐标,得出a,b的值代入(a+b)2019求值即可.【详解】因为关于x轴对称横坐标不变,所以,a-1=2,得出a=3,又因为关于x轴对称纵坐标互为相反数,所以b-1=-5,得出b=-4(a+b)2019=(3-4)2019即.故答案为:B【点睛】本题考查关于x轴对称的点,横坐标不变,纵坐标互为相反数的概念和有理数的幂运算原理,利用-1的偶次幂为1,奇次幂为它本身的原理即可快速得出答案为-1.8、D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求10分钟分针旋转的度数就简单了.【详解】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键.9、B【解析】分析:根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛:考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10、D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.11、C【分析】由一元二次方程根与系数的关系可得x1+x2=-3,x1·x2=2,利用完全平方公式即可求出答案.【详解】∵是一元二次方程的两个实数根,∴x1+x2=-3,x1·x2=2,∴=(x1+x2)2-2x1·x2=9-4=5,故选:C.【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为,那么x1+x2=,x1·x2=,熟练掌握韦达定理是解题关键.12、B【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.二、填空题(每题4分,共24分)13、(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14、15°【分析】先根据旋转的性质,求得∠BAB'的度数,再根据∠BAC=35°,求得∠B′AC的度数即可.【详解】∵将绕点顺时针方向旋转50°得到,∴,又∵,∴,故答案为:15°.【点睛】本题主要考查了旋转的性质,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.15、2π【分析】根据BC边扫过图形的面积是:S扇形DAB+S△ABC-S△ADE-S扇形ACE,分别求得:扇形BAD的面积、S△ABC以及扇形CAE的面积,即可求解.【详解】∵∠C=90°,∠BAC=60°,AC=2,∴AB=4,扇形BAD的面积是:=,在直角△ABC中,BC=AB•sin60°=4×=2,AC=2,∴S△ABC=S△ADE=AC•BC=×2×2=2.扇形CAE的面积是:=,则阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE=﹣=2π.故答案为:2π.【点睛】本题考查了扇形的面积的计算,正确理解阴影部分的面积是:S扇形DAB+S△ABC-S△ADE-S扇形ACE是关键.16、【分析】利用已知得出底面圆的半径为,周长为,进而得出母线长,再利用勾股定理进行计算即可得出答案.【详解】解:∵半径为的圆形∴底面圆的半径为∴底面圆的周长为∴扇形的弧长为∴,即圆锥的母线长为∴圆锥的高为.故答案是:【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.17、1【解析】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在的图象上,∴k=6;即,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数的函数值相等,又x=3时,,∴点Q的坐标为(2025,4),即n=4,∴=故答案为1.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.18、3【分析】根据题意画出图形,利用等边三角形的性质及锐角三角函数的定义直接计算即可.【详解】如图所示,连接OB、OC,过O作OG⊥BC于G.∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴边心距OG=OB•sin∠OBG=6(cm).故答案为:.【点睛】本题考查了正多边形与圆、锐角三角函数的定义及特殊角的三角函数值,熟知正六边形的性质是解答本题的关键.三、解答题(共78分)19、(1)60,10;(2)96°;(3)1020;(4)【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有(人),,故答案为60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数,故答案为96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:(人),故答案为1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12
种,恰好抽到1名男生和1名女生的结果有8种,∴恰好抽到1名男生和1名女生的概率为.【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.20、(1);(2)x≤﹣3或x≥2.【分析】(1)根据表格的数据可得抛物线的对称轴是直线x=,设出抛物线的顶点式,再代入两组数据进行求解即可;(2)由(1)可得抛物线图象开口向上,求得当y=4时x的值,根据抛物线的图象性质即可得到x的取值范围.【详解】解:(1)根据表中可知:点(﹣1,﹣2)和点(0,﹣2)关于对称轴对称,即抛物线的对称轴是直线x=,设二次函数的表达式是,把点(﹣2,0)和点(0,﹣2)代入得:,解得:a=1,k=,则该二次函数的表达式为(2)∵1>0,∴抛物线的图象开口向上,当y=4时,y=x2+x﹣2=4,解得:x=﹣3或2,则当y≥4时,自变量x的取值范围是x≤﹣3或x≥2.【点睛】本题主要考查二次函数图象的性质,解此题的关键在于根据题意利用待定系数法确定函数关系式,再根据抛物线的图象性质进行解答.21、见解析【解析】分析:(1)连接OD,由已知易得∠B=∠C,∠C=∠ODC,从而可得∠B=∠ODC,由此可得AB∥OD,结合DF⊥AB即可得到OD⊥DF,从而可得DF与⊙O相切;(2)连接AD,由已知易得BD=CD,∠BAD=∠CAD,由此可得DE=DC,从而可得DE=BD,结合DF⊥AB即可得到BF=EF.详解:(1)连结OD,∵AB=AC,∴∠B=∠C,∵OC=OD,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴DF⊥OD,∴直线DF与⊙O相切;(2)连接AD.∵AC是⊙O的直径,∴AD⊥BC,又AB=AC,∴BD=DC,∠BAD=∠CAD,∴DE=DC,∴DE=DB,又DF⊥AB,∴BF=EF.点睛:(1)连接OD,结合已知条件证得OD∥AB是解答第1小题的关键;(2)连接AD结合已知条件和等腰三角形的性质证得DE=DC=BD是解答第2小题的关键.22、(1)1980;(2)w=﹣5(x﹣1)2+180,w有最大值是680元;(3)112元【分析】(1)当3≤x<16时,设p与x的关系式为p=kx+b,当x=11时,代入解析式求出p的值,由销售金额=单价×数量就可以求出结论;(2)根据两个图象求得两个一次函数解析式,进而根据销售问题的等量关系列出二次函数解析式即可;(3)当x=15时代入(2)的解析式求出p的值,再当x=15时代入(1)的解析式求出y的值,再由利润=销售总额−进价总额−车费就可以得出结论.【详解】解:(1)当3≤x≤16时设p与x之间的函数关系式为p=kx+b依题意得把(3,30),(16,17)代入,解得∴p=﹣x+33当x=11时,p=22所以90×22=1980答:第11天的日销售额w为1980元.故答案为1980;(2)当11≤x≤20时设y与x之间的函数关系式为y=k1x+b1,依题意得把(20,0),(11,90)代入得解得∴y=﹣10x+200当16≤x≤20时设p与x之间的函数关系式为:p=k2x+b2依题意得,把(16,17),(20,19)代入得解得k2=,b2=9:∴p=x+9w=py=(x+9)(﹣10x+200)=﹣5(x﹣1)2+1805∴当16≤x≤20时,w随x的增大而减小∴当x=16时,w有最大值是680元.(3)由(1)得当3≤x≤16时,p=﹣x+33当x=15时,p=﹣15+33=18元,y=﹣10×15+200=50千克利润为:50(1﹣2%)×18﹣50×15﹣20=112元答:当天能赚到112元.【点睛】此题主要考查一次函数与二次函数的应用,解题的关键是根据题意分别列出一次函数与二次函数求解.23、(1);(2).【分析】(1)方程整理配方后,开方即可求出解;(2)把方程整理后左边进行因式分解,求方程的解【详解】(1),方程整理得:,配方得:,即,开方得:,解得:;(2),移项得:,提公因式得:,即,∴或,解得:.【点睛】本题主要考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理咨询员报考条件
- 二零二四年度股权投资合同标的投资额度3篇
- 二零二四年文化艺术交流与推广合同
- 二零二四年度出版合同
- 2024存量住宅装修设计合同
- 二零二四年度环保产业技术合作合同
- 二零二四年度数据中心装修工程安全标准合同
- 二零二四年智能电网用特种电缆订购合同
- 二零二四年度新能源汽车采购代理合同
- 存量航空器材租赁合同04年专用
- 2024-2025一年级上册科学教科版2.4《气味告诉我们》课件
- 中国文化概要智慧树知到答案2024年温州大学
- 贾玲陈赫多人小品《欢喜密探》剧本台词完整版
- 宣讲《铸牢中华民族共同体意识》全文课件
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 国家开放大学《四史通讲》形考任务专题1-6自测练习参考答案
- 10000中国普通人名大全
- FX挑战题梯形图实例
- 体育特色学校建设方案
- HXD3电力机车题库填空题
- 电厂固定资产目录(所有设备)
评论
0/150
提交评论