2025届湖南省永州市蓝山县数学九上期末经典模拟试题含解析_第1页
2025届湖南省永州市蓝山县数学九上期末经典模拟试题含解析_第2页
2025届湖南省永州市蓝山县数学九上期末经典模拟试题含解析_第3页
2025届湖南省永州市蓝山县数学九上期末经典模拟试题含解析_第4页
2025届湖南省永州市蓝山县数学九上期末经典模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省永州市蓝山县数学九上期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在的正方形网格中,每个小正方形的边长都是,的顶点都在这些小正方形的顶点上,则的值为()A. B. C. D.2.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的长为()A.5sinA B.5cosA C.5sinA3.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点且CD=4,则OE等于()A.1 B.2 C.3 D.44.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.5.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为A.12 B.9 C.6 D.46.若反比例函数y=的图象经过点(2,﹣6),则k的值为()A.﹣12 B.12 C.﹣3 D.37.﹣的绝对值为()A.﹣2 B.﹣ C. D.18.下列语句中,正确的是()①相等的圆周角所对的弧相等;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①② B.②③ C.②④ D.④9.已知2x=3y(x≠0,y≠0),则下面结论成立的是()A. B. C. D.10.如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是()A. B. C.2 D.11.下列运算中,结果正确的是()A. B. C. D.12.如图是半径为2的⊙O的内接正六边形ABCDEF,则圆心O到边AB的距离是()A.2 B.1 C. D.二、填空题(每题4分,共24分)13.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为_____.14.如图是抛物线图象的一部分,抛物线的顶点坐标为,与轴的一个交点为,点和点均在直线上.①;②;③抛物线与轴的另一个交点时;④方程有两个不相等的实数根;⑤;⑥不等式的解集为.上述六个结论中,其中正确的结论是_____________.(填写序号即可)15.反比例函数在第一象限内的图象如图,点是图象上一点,垂直轴于点,如果的面积为4,那么的值是__________.16.两个函数和(abc≠0)的图象如图所示,请直接写出关于x的不等式的解集_______________.17.已知,关于原点对称,则__________.18.从地面竖直向上抛出一小球,小球离地面的高度h(米)与小球运动时间t(秒)之间关系是h=30t﹣5t2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是________米.三、解答题(共78分)19.(8分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE(Ⅰ)求证:AE是⊙O的切线;(Ⅱ)若∠DBC=30°,DE=1cm,求BD的长.20.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.21.(8分)小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.22.(10分)如图,四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,将AC绕着点A顺时针旋转60°得AE,连接BE,CE.(1)求证:△ADC≌△ABE;(2)求证:(3)若AB=2,点Q在四边形ABCD内部运动,且满足,直接写出点Q运动路径的长度.23.(10分)如图,四边形是平行四边形,分别是的平分线,且与对角线分别相交于点.(1)求证:;(2)连结,判断四边形是否是平行四边形,说明理由.24.(10分)解方程:(1)2x(x﹣1)=3(x﹣1);(2)x2﹣3x+1=1.25.(12分)如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;(1)写出点D的坐标;(2)若点E为x轴上一点,且S△AOE=,①求点E的坐标;②判断△AOE与△AOD是否相似并说明理由;(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.26.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

参考答案一、选择题(每题4分,共48分)1、D【分析】过作于,首先根据勾股定理求出,然后在中即可求出的值.【详解】如图,过作于,则,AC==1..故选D.【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.2、C【解析】根据三角函数即可解答.【详解】解:已知在Rt△ABC中,∠C=90°,BC=5,故BCAB=sinA故AB=5sinA【点睛】本题考查正弦函数,掌握公式是解题关键.3、B【分析】利用菱形的性质以及直角三角形斜边上的中线等于斜边的一半进而得出答案.【详解】∵四边形ABCD是菱形,∴AB=CD=4,AC⊥BD,又∵点E是边AB的中点,∴OE=AB=1.故选:B.【点睛】此题主要考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半,得出OE=AB是解题关键.4、C【解析】∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===,故选C.点睛:此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.5、B【解析】∵点,是中点∴点坐标∵在双曲线上,代入可得∴∵点在直角边上,而直线边与轴垂直∴点的横坐标为-6又∵点在双曲线∴点坐标为∴从而,故选B6、A【解析】试题分析:∵反比例函数的图象经过点(2,﹣6),∴,解得k=﹣1.故选A.考点:反比例函数图象上点的坐标特征.7、C【解析】分析:根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.详解:﹣的绝对值为|-|=-(﹣)=.点睛:主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.8、C【分析】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断.【详解】①在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;②同弧或等弧所对的圆周角相等,本说法正确;③平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;④圆内接平行四边形一定是矩形,本说法正确;故选:C.【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键.9、D【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,B.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,C.由内项之积等于外项之积,得x:y=3:2,即,故该选项不符合题意,D.由内项之积等于外项之积,得2:y=3:x,即,故D符合题意;故选:D.【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.10、B【分析】取点H(6,0),连接PH,由待定系数法可求抛物线解析式,可得点C坐标,可得⊙C半径为4,由三角形中位线的定理可求OD=PH,当点C在PH上时,PH有最大值,即可求解.【详解】如图,取点H(6,0),连接PH,∵抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),∴,解得:,∴抛物线解析式为:y=﹣,∴顶点C(﹣3,4),∴⊙C半径为4,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大时,OD有最大值,∴当点C在PH上时,PH有最大值,∴PH最大值为=3+=3+,∴OD的最大值为:,故选B.【点睛】本题主要考查了切线的性质,二次函数的性质,三角形中位线定理等知识,解决本题的关键是要熟练掌握二次函数性质和三角形中位线的性质.11、C【解析】A:完全平方公式:,据此判断即可B:幂的乘方,底数不变,指数相乘,据此判断即可C:幂的乘方,底数不变,指数相乘D:同底数幂相除,底数不变指数相减【详解】选项A不正确;选项B不正确;选项C正确选项D不正确.故选:C【点睛】此题考查幂的乘方,完全平方公式,同底数幂的除法,掌握运算法则是解题关键12、C【分析】过O作OH⊥AB于H,根据正六边形ABCDEF的性质得到∠AOB==60°,根据等腰三角形的性质得到∠AOH=30°,AH=AB=1,于是得到结论.【详解】解:过O作OH⊥AB于H,在正六边形ABCDEF中,∠AOB==60°,∵OA=OB,∴∠AOH=30°,AH=AB=1,∴OH=AH=,故选:C.【点睛】本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)-3α,然后利用整体代入的方法计算即可.【详解】解:∵α,β是方程x2﹣3x﹣4=1的两个实数根,∴α+β=3,αβ=-4,∴α2+αβ﹣3α=α(α+β)-3α=3α-3α=1.故答案为1【点睛】本题主要考查了根与系数的关系,解题的关键是利用整体法代值计算,此题难度一般.14、①④【分析】①由对称轴x=1判断;②根据图象确定a、b、c的符号;③根据对称轴以及B点坐标,通过对称性得出结果;③根据的判别式的符号确定;④比较x=1时得出y1的值与x=4时得出y2值的大小即可;⑤由图象得出,抛物线总在直线的下面,即y2>y1时x的取值范围即可.【详解】解:①因为抛物线的顶点坐标A(1,3),所以对称轴为:x=1,则-=1,2a+b=0,故①正确;

②∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故②不正确;

③∵抛物线对称轴为x=1,抛物线与x轴的交点B的坐标为(4,0),∴根据对称性可得,抛物线与x轴的另一个交点坐标为(-2,0),故③不正确;④∵抛物线与x轴有两个交点,∴b2-4ac>0,∴的判别式,=b2-4a(c+3)=b2-4ac-12a,又a<0,∴-12a>0,∴=b2-4ac-12a>0,故④正确;⑤当x=-1时,y1=a-b+c>0;当x=4时,y2=4m+n=0,∴a-b+c>4m+n,故⑤不正确;

⑥由图象得:的解集为x<1或x>4;故⑥不正确;

则其中正确的有:①④.

故答案为:①④.【点睛】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b的值都是利用抛物线的对称轴来确定;②抛物线与x轴的交点个数确定其△的值,即b2-4ac的值:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点.15、1【分析】利用反比例函数k的几何意义得到|k|=4,然后利用反比例函数的性质确定k的值.【详解】解:∵△MOP的面积为4,∴|k|=4,∴|k|=1,∵反比例函数图象的一支在第一象限,∴k>0,∴k=1,故答案为:1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.16、或;【分析】由题意可知关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,由于反比例函数的图象有两个分支,因此可以分开来考虑.【详解】解:关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,观察图象的交点坐标可得:或.【点睛】本题考查一次函数的图象和性质、反比例函数的图象和性质以及一次函数、反比例函数与一次不等式的关系,理解不等式与一次函数和反比例函数的关系式解决问题的关键.17、1【分析】根据点(x,y)关于原点对称的点是(-x,-y)列出方程,解出a,b的值代入计算即可.【详解】解:∵,关于原点对称∴,解得,∴,故答案为:1.【点睛】本题考查了关于原点对称的点的坐标的特点,熟知点(x,y)关于原点对称的点是(-x,-y)是解题的关键.18、1【分析】根据题目中的函数解析式可以求得h的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h=30t−5t2=−5(t−3)2+45(0≤t≤6),∴当t=3时,h取得最大值,此时h=45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=1(米),故答案为1.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.三、解答题(共78分)19、(Ⅰ)见解析;(Ⅱ)4.【详解】(Ⅰ)证明:连结OA,∵DA平分∠BDE,∴∠ADE=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠ADE=∠OAD,∴OA∥CE,∵AE⊥CD,∴AE⊥OA,∴AE是⊙O的切线;(Ⅱ)∵BD是⊙O的直径,∴∠BCD=90°,∵∠DBC=30°,∴∠BDE=120°,∵DA平分∠BDE,∴∠ADE=∠ADO=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OD=BD,在Rt△AED中,DE=1,∠ADE=60°,∴AD==2,∴BD=4.20、(1)y=x+1;y=(2)证明见解析;(3)存在,D(8,1).【分析】(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.【详解】解:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1;(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB与CD互相垂直平分,∴四边形BCPD为菱形.∴点D(8,1)即为所求.21、.【解析】试题分析:列表得出所有等可能的情况数,找出两指针所指数字的和为5情况数,即可确定小军胜的概率.试题解析:列表如下:所有等可能的情况有16种,其中两指针所指数字的和为5的情况有4种,所以小军获胜的概率==.考点:列表法与树状图法.22、(1)证明见解析;(2)证明见解析;(3).【解析】(1)推出∠DAC=∠BAE,则可直接由SAS证明△ADC≌△ABE;(2)证明△BCE是直角三角形,再证DC=BE,AC=CE即可推出结论;(3)如图2,设Q为满足条件的点,将AQ绕着点A顺时针旋转60度得AF,连接QF,BF,QB,DQ,AF,证△ADQ≌△ABF,由勾股定理的逆定理证∠FBQ=90°,求出∠DQB=150°,确定点Q的路径为过B,D,C三点的圆上,求出的长即可.【详解】(1)证明:∵∠CAE=∠DAB=60°,∴∠CAE-∠CAB=∠DAB-∠CAB,∴∠DAC=∠BAE,又∵AD=AB,AC=AE,∴△ADC≌△ABE(SAS);(2)证明:在四边形ABCD中,∠ADC+∠ABC=360°-∠DAB-∠DCB=270°,∵△ADC≌△ABE,∴∠ADC=∠ABE,CD=BE,∴∠ABC+ABE=∠ABC+∠ADC=270°,∴∠CBE=360°-(∠ABC+ABE)=90°,∴CE2=BE2+BC2,又∵AC=AE,∠CAE=60°,∴△ACE是等边三角形,∴CE=AC=AE,∴AC2=DC2+BC2;(3)解:如图2,设Q为满足条件的点,将AQ绕着点A顺时针旋转60度得AF,连接QF,BF,QB,DQ,AF,则∠DAQ=∠BAF,AQ=QF,△AQF为等边三角形,又∵AD=AB,∴△ADQ≌△ABF(SAS),∴AQ=FQ,BF=DQ,∵AQ2=BQ2+DQ2,∴FQ2=BQ2+BF2,∴∠FBQ=90°,∴∠AFB+∠AQB=360°-(∠QAF+∠FBQ)=210°,∴∠AQD+∠AQB=210°,∴∠DQB=360°-(∠AQD+∠AQB)=150°,∴点Q的路径为过B,D,C三点的圆上,如图2,设圆心为O,则∠BOD=2∠DCB=60°,连接DB,则△ODB与△ADB为等边三角形,∴DO=DB=AB=2,∴点Q运动的路径长为:.【点睛】本题考查了旋转的性质,等边三角形的性质,四边形的内角和,勾股定理的逆定理,圆的有关性质及计算等,综合性较强,解题关键是能够熟练掌握并灵活运用圆的有关性质.23、(1)见解析;(2)是平行四边形;理由见解析.【分析】(1)根据角平分线的性质先得出∠BEC=∠DFA,然后再证∠ACB=∠CAD,再证出△ABE≌△CDF,从而得出AE=CF;

(2)连接BD交AC于O,则可知OB=OD,OA=OC,又AE=CF,所以OE=OF,然后依据对角线互相平分的四边形是平行四边形即可证明.【详解】(1)证明:四边形是平行四边形,,分别是的平分线,,∴,∴(2)是平行四边形;连接交于,四边形是平行四边形,,.即四边形为平行四边形(对角线互相平分的四边形是平行四边形).【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.24、(1)x1=1,x2=1.2;(2)或.【分析】(1)利用因式分解法求解可得;(2)利用公式法求解可得.【详解】解:(1)∵2x(x﹣1)=3(x﹣1),∴2x(x﹣1)﹣3(x﹣1)=1,则(x﹣1)(2x﹣3)=1,∴x﹣1=1或2x﹣3=1,解得x=1或x=1.2;故答案为x=1或x=1.2.(2)∵a=1,b=﹣3,c=1,∴△=(-3)2﹣4×1×1=2>1,则x,或.【点睛】本题考查了一元二次方程的解法,熟练掌握其常见的解法是解决本类题的关键.25、(1)(6,4);(2)①点E坐标或;②△AOE与△AOD相似,理由见解析;(3)存在,F1(﹣3,0);F2(3,8);;【分析】(1)求出方程x2﹣7x+12=0的两个根,OA=4,OB=3,可求点A坐标,即可求点D坐标;(2)①设点E(x,0),由三角形面积公式可求解;②由两组对边对应成比例,且夹角相等的两个三角形相似,可证△AOE∽△DAO;(3)根据菱形的性质,分AC与AF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论