江苏省镇江市丹徒区江心实验学校2022年数学九年级第一学期期末监测试题含解析_第1页
江苏省镇江市丹徒区江心实验学校2022年数学九年级第一学期期末监测试题含解析_第2页
江苏省镇江市丹徒区江心实验学校2022年数学九年级第一学期期末监测试题含解析_第3页
江苏省镇江市丹徒区江心实验学校2022年数学九年级第一学期期末监测试题含解析_第4页
江苏省镇江市丹徒区江心实验学校2022年数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若3a=5b,则a:b=()A.6:5 B.5:3 C.5:8 D.8:52.如图,E为矩形ABCD的CD边延长线上一点,BE交AD于G,AF⊥BE于F,图中相似三角形的对数是()A.5 B.7 C.8 D.103.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD等于()A.75° B.95° C.100° D.105°4.小明从图所示的二次函数的图象中,观察得出了下面四条信息:①;②<0;③;④方程必有一个根在-1到0之间.你认为其中正确信息的个数有()A.1个 B.2个 C.3个 D.4个5.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5 B.4或7 C.4或5或7 D.4或7或96.如图,点D是等腰直角三角形ABC内一点,AB=AC,若将△ABD绕点A逆时针旋转到△ACE的位置,则∠AED的度数为()A.25° B.30° C.40° D.45°7.如图,直线与双曲线交于、两点,过点作轴,垂足为,连接,若,则的值是()A.2 B.4 C.-2 D.-48.如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值为()A. B. C. D.9.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是()A.点O为位似中心且位似比为1:2B.△ABC与△DEF是位似图形C.△ABC与△DEF是相似图形D.△ABC与△DEF的面积之比为4:110.如图,在中,,过重心作、的垂线,垂足分别为、,则四边形的面积与的面积之比为()A. B. C. D.二、填空题(每小题3分,共24分)11.如果四条线段m,n,x,y成比例,若m=2,n=8,y=20,则线段x的长为________.12.在平面直角坐标系中,点与点关于原点对称,则__________.13.如果关于x的方程x2﹣5x+k=0没有实数根,那么k的值为________14.抛物线向左平移2个单位,再向上平移1个单位,得到的抛物线是______.15.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…16.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是__________.17.在相似的两个三角形中,已知其中一个三角形三边的长是3,4,5,另一个三角形有一边长是2,则另一个三角形的周长是.18.如图,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以点A为圆心,AB长为半径作弧交AC于D,分别以B、D为圆心,以大于BD长为半径作弧,两弧交于点E,射线AE与BC于F,过点F作FG⊥AC于G,则FG的长为______.三、解答题(共66分)19.(10分)盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸棋的次数n1002003005008001000摸到黑棋的次数m245176124201250摸到黑棋的频率(精确到0.001)0.2400.2550.2530.2480.2510.250(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由20.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.21.(6分)如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.(1)求点A的坐标;(2)求抛物线的解析式;(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.22.(8分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?23.(8分)如图,在梯形中,,,是延长线上的点,连接,交于点.(1)求证:∽(2)如果,,,求的长.24.(8分)如图,抛物线过原点,且与轴交于点.(1)求抛物线的解析式及顶点的坐标;(2)已知为抛物线上一点,连接,,,求的值;(3)在第一象限的抛物线上是否存在一点,过点作轴于点,使以,,三点为顶点的三角形与相似,若存在,求出满足条件的点的坐标;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y2=k2x+b.(1)求反比例函数和直线EF的解析式;(温馨提示:平面上有任意两点M(x1,y1)、N(x2,y2),它们连线的中点P的坐标为())(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x-b﹣>0的解集.26.(10分)如图,抛物线的图象经过点,顶点的纵坐标为,与轴交于两点.(1)求抛物线的解析式.(2)连接为线段上一点,当时,求点的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【解析】由比例的基本性质,即两内项之积等于两外项之积即可得出结果.【详解】解:∵3a=5b,∴=,故选:B.【点睛】此题主要考查比例的性质,解题的关键是熟知两内项之积等于两外项之积.2、D【解析】试题解析:∵矩形ABCD∴AD∥BC,AB∥CD,∠DAB=∠ADE=∴△EDG∽△ECB∽△BAG∵AF⊥BE∴∠AFG=∠BFA=∠DAB=∠ADE=∵∠AGF=∠BGA,∠ABF=∠GBA∴△GAF∽△GBA∽△ABF∴△EDG∽△ECB∽△BAG∽△AFG∽△BFA∴共有10对故选D.3、D【解析】试题解析:连接故选D.点睛:圆内接四边形的对角互补.4、C【详解】观察图象可知,抛物线的对称轴为x=,即,所以2a+3b=0,即①正确;二次函数的图象与x轴有两个交点,所以>0,②错误;由图象可知,当x=-1时,y>0,即a-b+c>0,③正确;由图象可知,二次函数的图象与x轴的一个交点在0和-1之间,所以方程必有一个根在-1到0之间,④正确.正确的结论有3个,故选C.【点睛】本题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5、D【解析】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.【详解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.6、D【分析】由题意可以判断△ADE为等腰直角三角形,即可解决问题.【详解】解:如图,由旋转变换的性质知:∠EAD=∠CAB,AE=AD;

∵△ABC为直角三角形,

∴∠CAB=90°,△ADE为等腰直角三角形,

∴∠AED=45°,

故选:D.【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.7、A【解析】由题意得:,又,则k的值即可求出.【详解】设,

直线与双曲线交于A、B两点,

,

,,

,

,则.

又由于反比例函数位于一三象限,,故.

故选A.【点睛】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为,是经常考查的一个知识点.8、B【分析】首先连接OC,由CE是切线,可得,由圆周角定理,可得,继而求得的度数,则可求得的值.【详解】解:连接OC,

是切线,

即,

,、分别是所对的圆心角、圆周角,

.故选:B.【点睛】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.根据切线的性质连半径是解题的关键.9、A【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】∵如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF,∴将△ABC的三边缩小到原来的,此时点O为位似中心且△ABC与△DEF的位似比为2:1,故选项A说法错误,符合题意;△ABC与△DEF是位似图形,故选项B说法正确,不合题意;△ABC与△DEF是相似图形,故选项C说法正确,不合题意;△ABC与△DEF的面积之比为4:1,故选项D说法正确,不合题意;故选:A.【点睛】此题主要考查了位似图形的性质,正确的记忆位似图形性质是解决问题的关键.10、C【分析】连接AG并延长交BC于点F,根据G为重心可知,AG=2FG,CF=BF,再证明△ADG∽△GEF,得出,设矩形CDGE中,DG=a,EG=b,用含a,b的式子将AC,BC的长表示出来,再列式化简即可求出结果.【详解】解:连接AG并延长交BC于点F,根据G为重心可知,AG=2FG,CF=BF,易得四边形GDCE为矩形,∴DG∥BC,DG=CD=EG=CE,∠CDG=∠CEG=90°,∴∠AGD=∠AFC,∠ADG=∠GEF=90°,∴△ADG∽△GEF,∴.设矩形CDGE中,DG=a,EG=b,∴AC=AD+CD=2EG+EG=3b,BC=2CF=2(CE+EF)=2(DG+)=3a,∴.故选:C.【点睛】本题主要考查重心的概念及相似的判定与性质以及矩形的性质,正确作出辅助线构造相似三角形是解题的突破口,掌握基本概念和性质是解题的关键.二、填空题(每小题3分,共24分)11、1【详解】解:根据题意可知m:n=x:y,即2:8=x:20,解得:x=1.故答案为:112、1【分析】根据在平面直角坐标系中的点关于原点对称的点的坐标为,进而求解.【详解】∵点与点关于原点对称,∴,故答案为:1.【点睛】本题考查平面直角坐标系中关于原点对称点的特征,即两个点关于原点对称时,它们的坐标符号相反.13、k>【解析】据题意可知方程没有实数根,则有△=b2-4ac<0,然后解得这个不等式求得k的取值范围即可.【详解】∵关于x的方程x2-5x+k=0没有实数根,∴△<0,即△=25-4k<0,∴k>,故答案为:k>.【点睛】本题主要考查了一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有:当△<0时,方程无实数根.基础题型比较简单.14、【分析】先得到抛物线的顶点坐标为(0,0),根据平移规律得到平移后抛物线的顶点坐标,则利用顶点式可得到平移后的抛物线的解析式为.【详解】抛物线的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移1个单位得到的点的坐标为(,1),

所以平移后的抛物线的解析式为.

故答案为:.【点睛】本题考查了二次函数图象的平移:由于抛物线平移后的形状不变,故a不变,再考虑平移后的顶点坐标,即可求出解析式.15、(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.16、【分析】从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,得出组成的两位数总个数及能被3整除的数的个数,求概率.【详解】∵从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,共有6种情况,它们分别是56、57、65、67、75、76,其中能被3整除的有57、75两种,∴组成两位数能被3整除的概率为:故答案为:【点睛】本题考查的是直接用概率公式求概率问题,找对符合条件的个数和总个数是关键.17、8或6或【分析】由一个三角形三边的长是3,4,5,可求得其周长,又由相似三角形周长的比等于相似比,分别从2与3对应,2与4对应,2与5对应,去分析求解即可求得答案.【详解】解:∵一个三角形三边的长是3,4,5,

∴此三角形的周长为:3+4+5=12,

∵在相似的两个三角形中,另一个三角形有一边长是2,

∴若2与3对应,则另一个三角形的周长是:;若2与4对应,则另一个三角形的周长是:;若2与5对应,则另一个三角形的周长是:.【点睛】本题考查相似三角形性质.熟知相似三角形性质,解答时由于对应边到比发生变化,会得到不同到结果,本题难度不大,但易漏求,属于基础题.18、.【分析】过点F作FH⊥AB于点H,证四边形AGFH是正方形,设AG=x,表示出CG,再证△CFG∽△CBA,根据相似比求出x即可.【详解】如图过点F作FH⊥AB于点H,由作图知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四边形AGFH是正方形,设AG=x,则AH=FH=GF=x,∵tan∠C=,∴AC==,则CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案为:.【点睛】本题是对几何知识的综合考查,熟练掌握三角函数及相似知识是解决本题的关键.三、解答题(共66分)19、(1)0.25;(2).【分析】大量重复试验下摸球的频率可以估计摸球的概率;画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解.【详解】(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.20、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.21、(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【解析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=-2x+2,根据PD⊥x轴,设P(x,-x2-3x+4),则E(x,-2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【详解】(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.22、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【详解】(1)设y与x之间的函数关系式为y=kx+b,根据题意得:,解得:,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W有最大值2.答:售价定为130元时,每天获得的利润最大,最大利润是2元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.23、(1)详见解析;(2)【分析】(1)根据三角形相似的判定定理,即可得到结论;(2)由∽,得,进而即可求解.【详解】(1)∵,∴,,∴∽;(2)解:∵,,,,∴.由(1)知,∽,∴,即∴.【点睛】本题主要考查相似三角形的判定和性质定理,掌握相似三角形对应边成比例,是解题的关键.24、(1)抛物线的解析式为;顶点的坐标为;(2)3;(3)点的坐标为或.【分析】(1)用待定系数法即可求出抛物线的解析式,进而即可求出顶点坐标;(2)先将点C的横坐标代入抛物线的解析式中求出纵坐标,根据B,C的坐标得出,,从而有,最后利用求解即可;(3)设为.由于,所以当以,,三点为顶点的三角形与相似时,分两种情况:或,分别建立方程计算即可.【详解】解:(1)∵抛物线过原点,且与轴交于点,∴,解得.∴抛物线的解析式为.∵,∴顶点的坐标为.(2)∵在抛物线上,∴.作轴于,作轴于,则,,∴,.∴.∵,.∴.(3)假设存在.设点的横坐标为,则为.由于,所以当以,,三点为顶点的三角形与相似时,有或∴或.解得或.∴存在点,使以,,三点为顶点的三角形与相似.∴点的坐标为或.【点睛】本题主要考查二次函数与几何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论