![2022-2023学年揭阳市榕城区数学八上期末复习检测试题含解析_第1页](http://file4.renrendoc.com/view2/M03/39/2F/wKhkFmaZD-WACOrqAAGqfRRUHwA174.jpg)
![2022-2023学年揭阳市榕城区数学八上期末复习检测试题含解析_第2页](http://file4.renrendoc.com/view2/M03/39/2F/wKhkFmaZD-WACOrqAAGqfRRUHwA1742.jpg)
![2022-2023学年揭阳市榕城区数学八上期末复习检测试题含解析_第3页](http://file4.renrendoc.com/view2/M03/39/2F/wKhkFmaZD-WACOrqAAGqfRRUHwA1743.jpg)
![2022-2023学年揭阳市榕城区数学八上期末复习检测试题含解析_第4页](http://file4.renrendoc.com/view2/M03/39/2F/wKhkFmaZD-WACOrqAAGqfRRUHwA1744.jpg)
![2022-2023学年揭阳市榕城区数学八上期末复习检测试题含解析_第5页](http://file4.renrendoc.com/view2/M03/39/2F/wKhkFmaZD-WACOrqAAGqfRRUHwA1745.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若分式的值为0,则的值等于()A.0 B.2 C.3 D.-32.为了筹备班级元旦联欢晚会,班长打算先对全班同学爱吃什么水果进行民意调查,再决定买哪种水果.下面的调查数据中,他最应该关注的是()A.众数 B.中位数 C.平均数 D.加权平均数3.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15° B.22.5° C.30° D.45°4.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=45.人数相同的八年级一、二两班同学在同一次数学单元测试,班级平均分和方差如下:,,则成绩较为稳定的班级是()A.一班 B.二班 C.两班成绩一样稳定 D.无法确定6.如图,△ABC的两个外角的平分线相交于D,若∠B=50°,则∠ADC=(
)A.60° B.80° C.65° D.40°7.计算的结果为()A. B. C. D.8.4的算术平方根是A.16 B.2 C.-2 D.9.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为()A.8 B.7 C.6 D.510.点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A.(﹣3,4) B.(3,﹣4) C.(﹣4,3) D.(4,﹣3)二、填空题(每小题3分,共24分)11.“同位角相等”的逆命题是__________________________.12.如图,在中,有,.点为边的中点.则的取值范围是_______________.13.我国南宋数学家杨辉所著的《详解九章算术》一书上,用如图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”,请计算的展开式中从左起第三项的系数为__________.14.我国南宋数学家杨辉用如图的三角形解释二项和的乘方规律,我们称这个三角形为“杨辉三角”,观察左边展开的系数与右边杨辉三角对应的数,则展开后最大的系数为_____15.如图,已知线段,是的中点,直线经过点,,点是直线上一点,当为直角三角形时,则_____.16.已知反比例函数,当时,的值随着增大而减小,则实数的取值范围__________.17.若无理数a满足1<a<4,请你写出一个符合条件的无理数________.18.在平面直角坐标系中,点关于轴对称的点的坐标为______.三、解答题(共66分)19.(10分)如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.20.(6分)在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,上存在点K,满足PK=1,直接写出b的取值范围.21.(6分)如图所示,在△ABC中,已知AB=AC,∠BAC=120°,AD⊥AC,DC=6求BD的长.22.(8分)如图,已知直线与轴,轴分别交于点,,与直线交于点.点从点出发以每秒1个单位的速度向点运动,运动时间设为秒.(1)求点的坐标;(2)求下列情形的值;①连结,把的面积平分;②连结,若为直角三角形.23.(8分)如图,已知在同一直线上,,.求证:.24.(8分)如图,平分交于,交于,.(1)求证:;(2).25.(10分)(1)计算:(2)解不等式组:,并把不等式组的整数解写出来.26.(10分)已知△.(1)在图中用直尺和圆规作出的平分线和边的垂直平分线交于点(保留作图痕迹,不写作法).(2)在(1)的条件下,若点、分别是边和上的点,且,连接求证:;(3)如图,在(1)的条件下,点、分别是、边上的点,且△的周长等于边的长,试探究与的数量关系,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【解析】分式的值为0,分子为0分母不为0,由此可得x-2=0且x+3≠0,解得x=2,故选B.2、A【解析】众数、中位数、平均数从不同角度反映了一组数据的集中趋势,但该问题应当看最爱吃哪种水果的人最多,故应当用众数.【详解】此问题应当看最爱吃哪种水果的人最多,应当用众数.故选A.【点睛】本体考查了众数、中位数、平均数的意义,解题时要注意题目的实际意义.3、C【解析】试题解析:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.4、C【详解】,去分母得,3(x-1)=2x,解得x=3.经检验,x=3是方程解.故选C.5、B【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【详解】解:∵,
∴成绩较为稳定的班级是乙班.
故选:B.【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6、C【分析】利用三角形的外角定理及内角定理推出∠ADC与∠B的关系,进而代入数据求出结果.【详解】设的两个外角为、.则(三角形的内角和定理),利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知,∴.故选:.【点睛】本题考查三角形的内角和定理及外角定理,熟记基本定理并灵活运用是解题关键.7、B【分析】根据分式乘除运算法则对原式变形后,约分即可得到结果.【详解】解:==.故选:B.【点睛】本题考查分式的乘除法,熟练掌握运算法则是解本题的关键.8、B【分析】根据算术平方根的定义直接求解即可.【详解】解:4的算术平方根是,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.9、B【详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,AE=AC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6−4)+5=7故选B.【点睛】本题考查全等三角形的应用.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、HL.通过证明三角形全等可以得到相等的边或角,可将待求量进行转化,使问题迎刃而解.10、C【详解】由点且到x轴的距离为2、到y轴的距离为1,得
|y|=2,|x|=1.
由P是第二象限的点,得
x=-1,y=2.
即点P的坐标是(-1,2),
故选C.二、填空题(每小题3分,共24分)11、如果两个角相等,那么这两个角是同位角.【解析】因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.12、【分析】根据题意延长AD至E,使DE=AD,根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,任意两边只差小于第三边求出AE,然后求解即可.【详解】解:如图,延长AD至E,使DE=AD,∵AD是△ABC中BC边上的中线,∴BD=CD,在△ABD和△ECD中,∴△ABD≌△ECD(SAS),∴CE=AB=5,∵AC=7,∴5+7=12,7-5=2,∴2<AE<12,∴1<AD<1.故答案为:1<AD<1.【点睛】本题考查全等三角形的判定与性质,三角形的三边关系,“遇中线,加倍延”构造出全等三角形是解题的关键.13、1【分析】根据图形中的规律即可求出(a+b)10的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;
(a+b)4的第三项系数为6=1+2+3;
(a+b)5的第三项系数为10=1+2+3+4;∴(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),
∴第三项系数为1+2+3+…+7=1,
故答案为:1.【点睛】本题考查数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.14、15【解析】根据题意已知的式子找到展开后最大的系数规律即可求解.【详解】∵展开后最大的系数为1=0+1;展开后最大的系数为2=1+1;展开后最大的系数为3=1+2;展开后最大的系数为6=1+2+3;∴展开后最大的系数为1+2+3+4=10;展开后最大的系数为1+2+3+4+5=15;故答案为:15.【点睛】此题主要考查多项式的规律探索,解题的关键是根据已知的式子找到规律求解.15、2或或.【分析】分、、三种情况,根据直角三角形的性质、勾股定理计算即可.【详解】解:如图:∵,∴当时,,当时,∵,∴,∴,当时,∵,∴,故答案为2或或.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.16、【分析】先根据反比例函数的性质得出1-2k>0,再解不等式求出k的取值范围.【详解】反比例函数的图象在其每个象限内,随着的增大而减小,,.故答案为:.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.17、π【分析】估计一个无理数a满足1<a<4,写出即可,如π、等.【详解】解:∵1<a<4∴1<a<∴a=π故答案为:π.【点睛】此题考查估算无理数的大小,解题关键在于掌握其定义.18、【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(﹣8,7)关于x轴对称的点的坐标为(﹣8,﹣7),故答案为:(﹣8,﹣7).【点睛】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.三、解答题(共66分)19、(1)证明见解析;(2)①3,4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【解析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.故答案为:(1)证明见解析;(2)①3,4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.20、(1)①(3,1);②1;③或;(2)当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则;当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.或【分析】(1)①根据A,B关于直线x=2对称解决问题即可.②求出直线OA与直线x=0.5的交点C的坐标即可判断.③由题意,根据△ABC上所有点到y轴的距离都不小于1,构建不等式即可解决问题.(2)由题意AB=,由△ABD是以AB为斜边的等腰直角三角形,推出点D到AB的距离为1,分两种情形分别求解即可解决问题.【详解】解:(1)①如图1中,当A(1,1),A,B关于直线x=2对称,∴B(3,1).故答案为(3,1).②如图2中,当A(﹣0.5,1),,直线l:x=0.5,设为,在上,直线AC的解析式为y=﹣2x,∴C(0.5,﹣1),∴点C到x轴的距离为1,故答案为1.③由题意,∵上所有点到y轴的距离都不小于1,∴t﹣1≥1或t+1≤﹣1,解得或.故答案为:或.(2)如图3中,∵,∴AB=∵是以AB为斜边的等腰直角三角形,∴点D到AB的距离为1,∴当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则.当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.综上:的取值范围是:【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称,等腰三角形的性质等知识,解题的关键是理解题意,学会利用参数根据不等式解决问题.21、1.【详解】试题分析:由题意先求得∠B=∠C=10°,再由AD⊥AC,求得∠ADC=60°,则∠BAD=10°,然后得出AD=BD.∵AB=AC,∠BAC=120°,∴∠B=∠C=10°,∵AD⊥AC,DC=6,∴AD=CD=1,∠ADC=60°.∴∠B=∠BAD=10°.∴AD=BD=1.考点:1.含10度角的直角三角形;2.等腰三角形的判定与性质.22、(1)点C的坐标为;(2)①t的值为2;②t的值为或.【分析】(1)联立两条直线的解析式求解即可;(2)①根据三角形的面积公式可得,当BP把的面积平分时,点P处于OA的中点位置,由此即可得出t的值;②先由点C的坐标可求出,再分和两种情况,然后利用等腰直角三角形的性质求解即可.【详解】(1)由题意,联立两条直线的解析式得解得故点C的坐标为;(2)①直线,令得,解得则点A的坐标为,即当点P从点O向点A运动时,t的最大值为BP将分成和两个三角形由题意得,即则,即此时,点P为OA的中点,符合题意故t的值为2;②由(1)点C坐标可得若为直角三角形,有以下2中情况:当时,为等腰直角三角形,且由点C坐标可知,此时,则故,且,符合题意当时,为等腰直角三角形,且由勾股定理得故,且,符合题意综上,t的值为或.【点睛】本题考查了一次函数的几何应用、等腰三角形的判定与性质、勾股定理等知识点,掌握一次函数的图象与性质是解题关键.23、证明见解析.【分析】由,则AD=AE,然后利用SAS证明△ABE≌△ACE,即可得到AB=AC.【详解】解:∵,∴AD=AE,∵,,∴△ABE≌△ACE,∴AB=AC.【点睛】本题考查了等角对等边的性质,以及全等三角形的判定和性质,解题的关键是熟练掌握等角对等边性质得到AD=AE.24、(1)证明见解析;(2)证明见解析【分析】(1)证明△ABD≌△ACF即可得到结论;(2)由(1)得∠ABD=∠ACF,∠CDE=∠BDA,根据三角形内角和定理可得∠CED=∠BAD=90°,即BE⊥CF,结合BD平分∠ABC可证明BC=BF.【详解】(1)∵∠BAC=90°,∴∠CAF=90°,∴∠BAC=∠CAF,又∵AB=AC,AD=AF,∴△ABD≌△ACF,∴∠ABD=∠ACF;(2)在△CDE和△BDA中∵∠DEC+∠CDE+DCE=180°,∠ABD+∠BDA+∠BAD=180°又∠ABD=∠ACF,∠CDE=∠BDA,∴∠CED=∠BDA=90°,∴∠CEB=∠FEB=90°,∵BD平分∠ABC∴∠CBE=∠FBE又BE为公共边,∴△CEB≌△FEB,∴BC=BF.【点睛】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理,证明三角形全等是证明线段或角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文学社组社方案及招生简章范文
- 现代企业财务管理的全球化视角
- 全钢爬架施工方案
- 汽车行业的品牌竞争战略分析
- 国庆节小吃店铺活动方案
- 国庆节手工干货活动方案
- 12《富起来到强起来》第一课时说课稿-2023-2024学年道德与法治五年级下册统编版001
- 2023六年级英语上册 Unit 3 Winter in canada Lesson 14 Snow!It's Winter说课稿 冀教版(三起)
- 2024-2025学年新教材高中物理 第三章 恒定电流 第3节 测量金属丝的电阻率说课稿 粤教版必修3
- 2024秋七年级数学上册 第3章 一次方程与方程组3.4 二元一次方程组的应用 2列二元一次方程组解实际应用(一)说课稿(新版)沪科版
- 2025-2030年中国电动高尔夫球车市场运行状况及未来发展趋势分析报告
- 河南省濮阳市2024-2025学年高一上学期1月期末考试语文试题(含答案)
- 2024年湖南高速铁路职业技术学院单招职业适应性测试题库及答案解析
- 安全事故案例图片(76张)课件
- 预应力锚索施工方案
- 豇豆生产技术规程
- 奢侈品管理概论完整版教学课件全书电子讲义(最新)
- 文艺美学课件
- 中药炮制学教材
- 常见肿瘤AJCC分期手册第八版(中文版)
- 电气第一种第二种工作票讲解pptx课件
评论
0/150
提交评论