边界单元法理论及程序设计1-位势边界元_第1页
边界单元法理论及程序设计1-位势边界元_第2页
边界单元法理论及程序设计1-位势边界元_第3页
边界单元法理论及程序设计1-位势边界元_第4页
边界单元法理论及程序设计1-位势边界元_第5页
已阅读5页,还剩99页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

BoundaryElementMethods—TheoryandProgramming

Xiao-WeiGAO,KaiYang(高效伟,杨恺)大连理工大学航空航天学院边界单元法理论及程序设计SchoolofAeronauticsandAstronauticsDalianUniversityofTechnology1.Introduction

1.1Whytolearnboundaryelementmethods(BEM)?为什么要学边界单元法(BEM)?Tosolveproblemsinwhichfiniteelementmethod(FEM)isinadequateorinefficient.GeometryisnotregularComputationalregionisInfiniteorsemi-infiniteFracturetipanalysis引言

BEMiseasytogeneratethedatarequiredtorunaproblemandcarryoutthemodificationsneededtoachieveanoptimumdesign.Whytolearnboundaryelementmethods(BEM)?为什么要学边界单元法(BEM)?OnlysurfacesoftheproblemneedtobediscretizedintoboundaryelementsMoreconvenienttodooptimumdesigncomputationSuitabeforparameterbackanalysisBEMismoreaccuratethanothernumericalmethods.Whytolearnboundaryelementmethods(BEM)?为什么要学边界单元法(BEM)?Semi-analysischaracteristicUseoffundamentalsolutionsGradientsofphysicalquantitieshavethesameaccuracylevelasthephysicalquantitiesselfBEMisveryefficienttosolveinfiniteorsemi-infiniteproblems.Whytolearnboundaryelementmethods(BEM)?为什么要学边界单元法(BEM)?InfiniteboundaryconditionscanbeautomaticallymodeledUseofInfiniteelementsUndergroundopeningPilefoundationproblemsAerodynamicproblemsBEMisrobusttosolvestress(orflux)concentrationproblems.Whytolearnboundaryelementmethods(BEM)?为什么要学边界单元法(BEM)?FundamentalsolutionsaresingularfunctionsFractureproblemsRigidfoundationproblemsBoundarylayerproblemsinfluidmechanicsReferences(参考文献)BoundaryElementsAnIntroductoryCourse,

BrebbiaCA,DominguezJ,ComputationalMechanicsPublications,1992。BoundaryElementProgramminginMechanics,

GaoXW&DaviesTG,CambridgeUniversityPress,2002。边界单元法的理论和工程应用,(英)布瑞比亚等著,北京-国防工业出版社,1988。边界元理论及应用,杨德全,赵忠生,北京-理工大学出版社,2002。1.2MathematicalPreliminaries(数学预备知识)Summationnotation:

Repeatedsubscriptsimplysummationofalltermsintherange,e.g.,

for2Dproblems,andfor3Dproblems.Therelationshipbetweenthesurfacetractionsandstressescanbeexpressedaswhichcanbewritteninthecomponentformas(i

=

1):(i

=

2):(i

=

3):Kroneckerdeltasymbolwheni=jwhenijInmatrixnotation,itsequivalentistheidentitymatrix[I].

Diracdeltafunction(impulsefunction)

wherepisthesingularpointand

denotesavanishinglysmallradiusofintegrationaroundthissingularity.

Gauss’theoremwhere

istheproblemdomain,

istheboundaryandisthei-thcomponentoftheunitoutwardnormalvector.

ThereductionofcertaindomainintegralstosurfaceintegralsiscentraltoBEM.Themethodof‘integrationbyparts’isanotherbasicmathematicaltechniquewhichisusedofteninconjunctionwithGauss’theorem.

Differentiationoftheproductoftwofunctions(f&g),withrespecttoxi,yields:‘integrationbyparts’statement:UsingGauss’theoremweobtain:

BEMfor1DProblems一维问题的边界单元法One-dimensionalsecond-orderdifferentialequation:Multiplyequationbygandintegratebyparts

Integrationbypartstothelastterm

Letg(x,p)bethefundamentalsolutionoftheequation:

wherecisaconstantand.UsingDiracdeltafunctionpropertySubstitutingitintopreviousequationandusingwhereItfollowsthatxabConsideringuboundaryconditions:SolvingforandyieldsitfollowsthatFinally,weobtainorwhere作业:推导左边u已知,右边q已知情况下的关系式.2.BEMforPotentialProblems位势问题的边界单元法

PotentialflowproblemsHeatconductionproblemsSeepageproblemsElectromagneticfieldproblemsAcousticproblems(Helmholtzequations)GoverningEquation(Laplaceequation):inBoundaryconditions:onon(EssentialCondition)(NaturalCondition)wherewhere2.1BasicIntegralEquationsMultiplygoverningequationbyweightedfunction

:(weightedResidualFormulation)orwrittenas:whereInasimilarmannerPuttingthemtogetheryieldsLet

bethefundamentalsolutionoftheequation:

SubstitutingbackandfromI=0,weobtainUsingnotationswecanexpresstheintegralequationas

Fundamentalsolutionscanbederivedasfor2Dproblemsfor3DproblemsDerivationoftheFundamentalsolutionfor2DConsiderradialdistributionofand,wehaveTheLaplaceoperatorinthecylindricalcoordinatesystemcanbeexpressedasIntegratingthisequationtwiceyieldsTodetermine,integratingequationoveracircularareaaroundpointpwithradius,itfollowsthat(assuming)Finally,thefundamentalsolutionfor2DisderivedasSubstitutingintothisequationyieldsDerivationoftheFundamentalsolutionfor3DTheLaplaceoperatorinthesphericalcoordinatesystemcanbeexpressedasIntegratingthisequationtwiceyieldsConsiderradialdistributionofand,wehaveTodetermine,integratingequationoveraspherewithradius,itfollowsthatFinally,thefundamentalsolutionfor3DisderivedasSubstitutingintothisequationyieldsBoundaryIntegralEquationThederivedintegralequationisonlyvalidforinternalpoints.Tosetuptheintegralequationforboundarypoints,alimitprocessisperformed.Asimplewaytodothisistoconsiderthatthepointiisontheboundarybutthedomainitselfisaugmentedbyahemisphereofradius(in3D)asshowninthefollowingfigure.For3D(),theintegralaroundgives:NoticingthatitfollowsthatTheyproducewhatiscalledafreeterm.For2D(),theintegralaroundgives:NoticingthatitfollowsthatTheyproducewhatiscalledafreeterm.TheboundaryintegralequationcanbewrittenforsmoothboundarypointsasForboundarypointslocatedatacorner,sinceTheboundaryintegralequationcanbewrittenforsmoothboundarypointsastheboundaryintegralequationiswhere.Forthesakeofeasyunderstanding,theboundaryintegralequationcanbewrittenaswherePisthesourcepointandQthefieldpoint.BoundaryElementMethod(BEM)Tonumericallysolvetheboundaryintegralequation,theboundaryisdividedintoNsegmentsorelements.ConstantElementsFortheconstantelements,thevaluesofuandqareassumedtobeconstantovereachelementandequaltothevalueatthemid-elementnode.CollocatingthesourcepointPatthei-thnode,thediscretizedboundaryintegralequationbecomes:UsingthefollowingnotationsTheBEMequationcanbeexpressedasinwhich,andarevaluesofuandqatnodei.Letusnowcallwheni≠jwheni=jhencetheBEMequationcanbewrittenasIfthepositionofivariesfrom1toN,oneobtainsTheseequationscanbewritteninmatrixformaswhere[H]and[G]aretwoNXNmatricesand{u}and{q}arevectorsoflengthN,i.e.,Ifqisspecifiedatallnodes,itiseasytowritethesystemofequationasfollows:whereSimilarly,ifuisspecifiedatallnodes,wecanobtain:whereIfsomenodesarespecifiedwithuandotherwithq,wehavetorearrangethesystembymovingcolumnswithspecifiedvaluestotheright-handsideandcolumnswithunknownstotheleft-handsidetoformthefollowingsystemofequations.where{x}isavectorofunknownsu’sandq’svaluesand{b}isfoundbymultiplyingthecorrespondingcolumnsbytheknownvaluesofu’sandq’s.Forexample,ifandaregivenandotheruareunknowns,wecanoperatethealgebraicequationsasMultiplyingtheright-handsidetogether,thefollowingmatrixequationcanbeobtained:whereEvaluationofInternalPotentialwherefor2Dproblemsfor3DproblemsiQrEvaluationofIntegralsIn2DProblems1.Evaluationofinfluencecoefficient2.EvaluationofinfluencecoefficientChangecoordinatestoalocaloneWhereistheelementlengthand.Thelastintegralisequalto1.So3.Evaluationofinfluencecoefficientwheredisthedistancefromtotheelement.12a)whenItfollowsthat12Forsegment:cSoForsegment:Itfollowsthatb)whenc)whend=0,d124.EvaluationofinfluencecoefficientOnedimensionalGaussquadratureformulasGaussquadraturewhere()where

aretheGaussordinates;

aretheweights.nistheGaussorders;

Order(n)Ordinates()Weights(wk)1022

0.5773502692130

0.77459666920.88888888890.55555555564

0.3399810436

0.86113631160.65214515490.347854845150

0.5384693101

0.90617984590.56888888890.47862867050.23692688516

0.2386191861

0.6612093865

0.93246951420.46791393460.36076157300.1713244924(Stround&Secrest,1966)where

:theGaussordinates:theweightsn:theGaussorders

GaussintegrationruleforthelogarithmicallysingularfunctionsnOrdinates()Weights()10.25120.11200880610.60227690810.71853931900.281460680930.06389079310.36899706370.76688030390.51340455220.39198004120.094615406640.04144848010.24527491430.55616545350.84898239450.38346406810.38687531770.19043512690.039225487150.0291344722041170252050.67731417450.89477136100.29789347170.34977622650.23448829000.09893045950.0189115521ComputerCode(POCONBE)forPotentialProblemsusingConstantElementsMainprogramlist:RoutineOUTPTPCThisroutineoutputstheresults.Itfirstliststhecoordinatesoftheboundarynodesandthecorrespondingvaluesofpotentialanditsderivatives(orfluxes).Italsoprintsthevaluesofpotentialandfluxesatinternalpointsifanyhavebeenrequested.Example2.1:HeatFlowExampleDefinitionoftheproblemBoundaryconditionsInputdata(HEAT.INP):HEATFLOWEXAMPLE(12CONSTANTELEMENTS)125(Numbersofboundaryelementsandinternalnodes)0.0.2.0.4.0.6.0.6.2.6.4.(X(I),Y(I),I=1,N)6.6.4.6.2.6.0.6.0.4.0.2.10.(BoundaryconditionsKODE(I)andFI(I))10.10.00.00.00.10.10.10.0300.0300.0300.2.2.2.4.3.3.4.2.4.4.(Coordinatesofinternalpoints)Outputdata(HEAT.OUT):

BOUNDARYNODESXYPOTENTIALPOTENTIALDERIVATIVE0.10000E+010.00000E+000.25225E+030.00000E+000.30000E+010.00000E+000.15002E+030.00000E+000.50000E+010.00000E+000.47750E+020.00000E+000.60000E+010.10000E+010.00000E+00-0.52962E+020.60000E+010.30000E+010.00000E+00-0.48771E+020.60000E+010.50000E+010.00000E+00-0.52962E+020.50000E+010.60000E+010.47750E+020.00000E+000.30000E+010.60000E+010.15002E+030.00000E+000.10000E+010.60000E+010.25225E+030.00000E+000.00000E+000.50000E+010.30000E+030.52969E+020.00000E+000.30000E+010.30000E+030.48737E+020.00000E+000.10000E+010.30000E+030.52969E+02INTERNALPOINTSXYPOTENTIALFLUXXFLUXY0.20000E+010.20000E+010.20028E+03-0.50303E+02-0.14976E+000.20000E+010.40000E+010.20028E+03-0.50303E+020.14975E+000.30000E+010.30000E+010.15001E+03-0.50215E+02-0.25367E-050.40000E+010.20000E+010.99740E+02-0.50306E+020.14564E+000.40000E+010.40000E+010.99740E+02-0.50306E+02-0.14564E+00LinearElementsForthelinearelements,thevaluesofuandqareassumedtobelinearlyvaryingovereachelementandequaltothevaluesattheendsoftheelement.AfterdiscretizingtheboundaryintoaseriesofNelements,theboundaryintegralequationcanbewrittenasinwhich,theindexirepresentsthesourcepointcollocatingatnodei.whereistheinternalangleofthecornerinradians.Toevaluateboundaryintegrals,uandqareinterpolatedbytwonodalvaluesattheendsoftheelement.Takingthedimensionlesscoordinateasthevariablefrom-1to+1,thelinearvariationofucanbeexpressedasLettakevaluesatthetwoendsoftheelement.ItfollowsthatSolvingthisequationsetforkandbgiveswhereandarethenodalvaluesofu.UsingthefollowingnotationsSubstitutingthembacktothelineequationyieldsTheinterpolationformulationcanbewrittenasandarecalledshapefunctions.Similarly,whereNowtheintegralsinboundaryintegralequationscanbeexpressedaswhereAlgebraicSystemofEquationsFromWecanobtainforthei-thecollocationpointthat:whereorAswaspreviouslyshown,wecansimplywritewherewhenj

iwhenj=iandthewholesetinmatrixformbecomes[H]{u}=[G]{q}where[G]isnowanNX2Nrectangularmatrix.DeterminationoftheDiagonalTermsin

[H]forCloseDomainsThediagonaltermsin[H]

arecomputedimplicitly.Assumingaconstantpotentialoverthewholeboundary,thefluxmustbezeroandhence[H]{I}={0}Where{I}isavectorthatforallnodeshasaunitpotential.Thus,wehave(for)Whichgivesthediagonalcoefficientsintermsoftherestofthetermsofthe[H]matrix.DeterminationoftheDiagonalTermsin

[H]forInfiniteDomainsIfaunitpotentialisprescribedforaboundlessdomain,itfollowsthatthediagonaltermsare(for)Whichgivesthediagonalcoefficientsintermsoftherestofthetermsofthe[H]matrix.Sinceforacircularboundary,DeterminationoftheDiagonalTermsin

[G]Fortheelementwhichincludesthesingularity,theinfluentcoefficientscanbeexpressedasUsingtheintegrationvariabletransformationitcanbederivedthatThenthediagonaltermsbecomeIntegratingthemanalyticallyyieldsApplyboundaryconditionsAccordingtothesmoothnessoftheboundarynodes(includingcorners),fourdifferentcasesarepossibledependingontheboundaryconditions:Knownvalues:fluxes‘before’and‘after’thecorner.Unknownvalue:potential(b)Knownvalues:potential,andflux‘before’thecorner.Unknownvalue:flux‘after’thecorner(c)Knownvalues:potential,andflux‘after’thecorner.Unknownvalue:flux‘before’thecorner(d)Knownvalues:potential.Unknownvalues:flux‘before’and‘after’thecorner.Thereisonlyoneunknownpernodeforthefirstthreecases,andtwounknownsforcase(d).Aslongasthereisonlyoneunknownpernode,systemcanbereorderedinsuchawaythatalltheunknownsaretakentothelefthandsideandobtaintheusualsystemofNXNequations,i.e.[A]{X}={F}Where{X}isthevectorofunknownboundarypotentialsandfluxes,and{F}istheknownvectorcomputedbytheproductoftheknowboundaryconditionsandthecorrespondingcoefficientsofthe[G]or[H]matrices.Whenthenumberofunknownsatacornernodeistwo(case(d)),oneextraequationisneededforthenode.Theproblemcanbesolvedusingauxiliaryequationsordiscontinuouselements.DiscontinuousElementsToavoidtheproblemofhavingtwounknownfluxesatacomernode(forwhichonlyoneboundaryelementequationcanbewritten),thenodesofthetwolinearelementswhichmeetatthecornercanbeshiftedinsidethetwoelements.Thenodesremainastwodistinctnodesandoneequationcanbewrittenforeachnode.Discontinuouselementsarealsousefulforsituationsinwhichoneofthevariablestakesaninfinitevalueattheendoftheelement(forinstanceatareentrycornerorinfracturemechanicsapplications).Thevaluesofuandqatanypointonalinearelementhavebeendefinedintermsoftheirvaluesattheextremepointsbyequation:DiscontinuousElementsIfthetwonodesofanelementhavebeenshiftedfromtheendsdistancesaandbrespectively,theaboveequationcanbeparticularizedforthenodes.whereandarethelocalcoordinatesofthenodalpoints.InvertingtheaboveequationgiveswhereThenewinterpolationformulationnowbecomesThesaverelationcanbewrittenfortheflux:Whensolvingapotentialproblem,continuousanddiscontinuouselementscanbeusedtogetherinthesamemesh.Thetotalnumberofnodeswillbeequaltothetotalnumberofelementsplusoneadditionalnodepereachdiscontinuouselement.Thecoefficientciisequalto0.5forthenodesondiscontinuouselements.NearlySingularIntegrals高斯数值积分公式的误差:

致密封顶层高温陶瓷层过渡层氧化层粘结层基体氧化层过渡层粘结层9qm—高斯积分点数e—积分精度f—被积函数p为被积函数的奇异性阶数,由表征,表示边界单元在第个积分方向上的长度,R表示源点到边界单元的最小距离,为积分精度。在大量数值调查结果的基础上,得出了下列确定高斯点数的实用公式(Gao&Davies,2002):式中重新整理后可得:3.单元子分法线单元1-2的子单元划分示意图几乎奇异积分计算方法1.解析积分法2.积分变换法算例分析具有两层涂层材料的圆柱形刚性基体外涂层杨氏模量与内涂层杨氏模量的比值为1/2,内外涂层的泊松比相同,采用平面应力条件计算。解析解:A点和B点的径向应力随外涂层厚度的变化

最大边界元所需划分的子单元数目QuadraticandHigherOrderElementsItisusuallymoreconvenientforarbitrarygeometriestoimplementsometypeofcurvilinearelements.Thesimplestofthesearethethreenodedquadraticelements.AfterdiscretizingtheboundaryintoaseriesofNelements,theboundaryintegralequationcanbewrittenasinwhich,theindexirepresentsthesourcepointcollocatingatnodei.Thepotentiala

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论