发电厂热力循环_第1页
发电厂热力循环_第2页
发电厂热力循环_第3页
发电厂热力循环_第4页
发电厂热力循环_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

发电厂热力循环唐志兴一、热力学定律相关知识的了解:<热力学第一定律,热力过程,热力学第二定律>(一)自然界是由各种物质所组成,一切物质都离不开运动,而能量又是物质运动的量度,所以,物质,运动和能量三者都相互依存的,物质不灭,运动不息,能量自然也不灭。也就是说能量不会不会被创造,也不会被消灭,但是物质具有多种运动形式,因此量度物质运动的能量也就相应的具有多种形态。物质的运动可以从一种形式转变为另一种形式,能量也就相应地从一种形态转换为另一种形态。如:电流通过导线发热就是电能转换为热能,摩擦生热就是机械能转换为热能,汽缸内的气体膨胀推动活塞就是热能转换为机械能,在能量的转换过程中,能量的总量保持不变,可以根据能量的转换与守恒,概述为能量从一种形态转换为另一种形态,转换过程中,能量的总量恒定不变,而工程热力学中主要研究热能与机械能的相互转换和守恒,故热力学第一定律可以表述为“热可以变为功,功也可以变为热,消失一定量的热时,必产生数量相当的功,消耗一定量的功时,亦出现相当数量的热。”根据能量的转换关系是指遵守热力学第一定律能量守恒的前提下,在热能动力装置的各个设备中,所实施的不可逆的过程,且工质的各个状态状态数都在变化。忽略实际的一切影响因素,对各设备中所发生的实际过程进行细致的分析,可以看出这些过程近似为定容过程,定压过程,定温过程和绝热过程。定容过程:工质在状态变化过程中,其比容始终维持不变的热力过程称为定容过程。2.定压过程:工质在状态变化过程中,其压力始终维持不变的热力过程称为定压过程。3.定温过程:工质在状态变化过程中,其温度始终维持不变的热力过程称为定温过程。 4.绝热过程:工质在状态变化过程中,其与外界在任一瞬间均无热量交换的热力过程称为绝热过程。在能量的传递和相互转换过程中,热力学性第一定律确定了能量的总数量不会改变,既不会增多,也不会减少,一切与热现象有关的过程都必须遵守热力学第一定律。但是,符合热力学第一定律的热力过程不一定都能可以自动发生。对这类问题热力学第一定律是无法完成,而热力学第二定律正是用来阐明热力过程进行的方向、条件和限度的。为便于理解这些问题,比如:1.热量由高温物体自动向低温物体传递。2.气体由高压区自动向低压区膨胀。自发过程的表现形式是多种多样的,但它们本质的共同点都是单方向的,都是不可逆的,热力学第二定律正是揭示这一共同点和表述这一共同点的基本客观规律的,但是对某一具体的自发过程进行研究,可以针对该过程作出一种热力学第二定律的表述。温度传递:克劳修斯:不可能将热由低温物体向高温物体传递而不留下其他任何变化。主要说明热量由高温物体向低温物体传递的自发过程是不可逆的。能量转换:开尔文:不可能从单一热源取热并使转变为功,而不留下其它任何变化。指明功转变为热的自发过程是不可逆的,“第二类永动机是永远不能成立的”。二、卡诺循环热机的循环热效率的极限值必在理想的情况下确定。有了热力学第一、第二定律的导出,法国工程师卡诺是最早研究了热机理论。他设想了一种理想的热机循环。这种热机循环是由定温吸热,绝热膨胀,定温放热和绝热压缩的四个过程组成一个可逆循环。 卡诺循环再蒸汽动力设备中的应用饱和水在锅炉内的吸热汽化过程5—1饱和蒸汽在排汽装置内的放热凝结过程2—c即为定压过程又是定温过程。因此,在饱和蒸汽卡诺循环中,定温吸热过程5—1,定温放热过程2—c和蒸汽在汽轮机内的绝热膨胀过程1—2均可近似实现,但湿蒸汽在压缩机内的绝热压缩过程c-5却难以实现,因为压缩湿蒸汽时压缩机所消耗的功很大,更何况压缩汽水混合物时压缩机的工作极不稳定。因此,卡诺循环只能局限于饱和区内,因为超出饱和区工质的定压吸热过程就不在是定温过程。因而,工质吸热的上限温度受临界温度374.15℃的限制,工质的放热的下限温度又受大气环境温度的限制。这样的循环中的温差不大,即使在饱和区内实现了卡诺循环,其热效率也是不高。朗肯循环针对饱和蒸汽卡诺循环存在的问题,进行改进就出现朗肯循环,同时广泛应用于发电厂热力循环中,作为工质的水和蒸汽在蒸汽动力装置中流经各个设备,分别进行吸热,膨胀,放热和升压的过程,从而完成整个循环。1.吸热过程1-4在锅炉内,未饱和水由状态4经省煤器被加热到饱和水状态5,4-5过程定压不定温。状态5的饱和水经蒸发器被加热汽化为状态6的干饱和蒸汽,5-6过程定压又定温。状态6的干饱和蒸汽经过热器被加热到所需状态1的过热蒸汽,6-1定压不定温。由此可知,工质在锅炉内的吸热过程4-1是由未饱和水的预热过程4-5、饱和水的汽化过程5-6和饱和蒸汽的过热过程6-1串联而成。膨胀过程1-2在汽轮机内状态1的过热蒸汽经膨胀做功后变成状态2的湿蒸汽。(0.85-0.88干度)放热过程2-3在排汽装置内,状态2的湿蒸汽向循环冷却水(或空气)中放热,凝结成状态3的凝结水(饱和水)。升压过程3-4在水泵内,状态3的凝结水经水泵升压成状态4的未饱和水。蒸汽参数对朗肯循环热效率的影响:1.排气压力的影响在进气压力和进气温度保持不变的情况下,降低排气压力,可以提高循环热效率,排汽是饱和蒸汽,排汽压力改变,其对应的饱和温度必然随之而改变。在朗肯循环的排气压力为中,其对应的饱和温度即为循环的平均放热温度,若将循环的排气压力由降为,则其平均放热温度必由降至,因而出现另一新的朗肯循环,新循环的排汽压力为,其平均放热温度是,由于排汽压力的降低,热效率显著升高。而在新的循环中,排汽压力降低要在设计的限额之内,若过分的降低会导致排汽干度的降低,排汽干度低于限定值,则有可能影响汽轮机的安全、经济运行。平均吸热温度循环热效率平均放热温度/平均吸热温度熵增量2.进汽温度的影响在进汽压力和排汽压力保持不变的情况下,提高进汽温度,可以提高循环热效率。在朗肯循环中,其进汽温度为(即为循环上限温度)。平均放热温度为,平均吸热温度为,若进汽温度由提高到,则形成另一个朗肯循环,该循环的进汽温度为,平均放热温度为,平均吸热温度为,由于吸热的上限温度提高(>),平均吸热温度提高(>),平均放热温度未改变(=),所以新的循环比原循环具有更高的热效率。由此可见,提高进汽温度,定能提高朗肯循环的热效率。例外,提高进汽温度,还可以提高排汽的干度。3.进汽压力的影响在进汽温度和排汽压力保持不变的情况下,提高进汽压力,可以提高循环热效率。在朗肯循环中,其进汽压力为,平均吸热温度为,平均放热温度为,若该循环压力由提高到,则形成另一种朗肯循环。进汽压力提高后的循环的压力为,其平均吸热温度为,平均放热温度为,由于进汽压力由提高到,平均吸热温度提高(>),平均放热温度未改变(=),所以新循环比原循环的热效率高,由此可见,提高进汽压力,可以提高朗肯循环的热效率。实质上,进汽压力的提高,循环的上限温度和下限温度并未改变,主要是蒸发段5-6的蒸发温度(即饱和温度)提高了,使得平均吸热温度上升,因而循环热效率提高。由图可以看出,提高进汽压力会导致排汽干度降低,所以在提高进汽压力的同时应提高进汽温度,这样能取得较理想的效果。四、再热循环为了提高汽轮机的进汽压力,而引起排汽干度的下降的不良后果,可以再朗肯循环的基础上进行改进,即出现了再热循环。再热是在汽轮机高压部分工作的蒸汽膨胀到一定压力时,将其全部抽出引入锅炉再热器中,进行再次吸热,然后再进入汽轮机低压部分继续做功,最终膨胀成为乏汽,排出汽轮机。这样可以提高汽轮机排汽干度,还又适当提高循环热效率。

则再热循环的平均吸热温度将高于原朗肯循环的平均吸热温度,从而提高了再热循环的热效率,若中间再热压力选择的过低,则会造成附加循环的平均吸热温度低于原朗肯循环的平均吸热温度,从而降低再热循环的热效率。如果压力

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论