




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在中,,点,分别是边,的中点,点在内,连接,,.以下图形符合上述描述的是()A. B.C. D.2.二次函数y=ax2+bx+c(a≠1)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,有下列结论:①b2﹣4ac>1;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=1.其中,正确的结论有()A.①③④ B.①②④ C.③④⑤ D.①③⑤3.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55° B.70° C.125° D.145°4.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40° B.50° C.80° D.100°5.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是()A.中位数是3,众数是2 B.中位数是2,众数是3C.中位数是4,众数是2 D.中位数是3,众数是46.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)7.下列4个图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.8.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56° B.62° C.68° D.78°9.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米 B.米 C.米 D.0.4米10.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是红球 B.至少有1个球是白球C.至少有2个球是红球 D.至少有2个球是白球11.方程(m﹣1)x2﹣2mx+m﹣1=0中,当m取什么范围内的值时,方程有两个不相等的实数根?()A.m> B.m>且m≠1 C.m< D.m≠112.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)二、填空题(每题4分,共24分)13.在一只不透明的口袋中放入只有颜色不同的白色球3个,黑色球5个,黄色球n个,搅匀后随机从中摸取一个恰好是白色球的概率为,则放入的黄色球数n=_________.14.将一副三角尺按如图所示的方式叠放在一起,边AC与BD相交于点E,则的值等于_________.15.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).16.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.17.计算的结果是_____.18.如图,在中,交于点,交于点.若、、,则的长为_________.三、解答题(共78分)19.(8分)已知一个圆锥的轴截面△ABC是等边三角形,它的表面积为75πcm²,求这个圆维的底面的半径和母线长.20.(8分)将如图所示的牌面数字1、2、3、4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是奇数的概率是;(2)从中随机抽出两张牌,两张牌牌面数字的和是6的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用树状图或列表的方法求组成的两位数恰好是3的倍的概率.21.(8分)已知关于x的方程x2+mx+m-2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.22.(10分)如图,在平面直角坐标系中,抛物线交轴、两点(在的左侧),且,,与轴交于,抛物线的顶点坐标为.(1)求、两点的坐标;(2)求抛物线的解析式;(3)过点作直线轴,交轴于点,点是抛物线上、两点间的一个动点(点不与、两点重合),、与直线分别交于点、,当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.23.(10分)随着人民生活水平的不断提高,某市家庭轿车的拥有量逐年增加,据统计,该市2017年底拥有家庭轿车64万辆,2019年底家庭轿车的拥有量达到100万辆.(1)求2017年底至2019年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2020年底全市汽车拥有量不超过118万辆,预计2020年报废的汽车数量是2019年底汽车拥有量的8%,求2019年底至2020年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.24.(10分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)25.(12分)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE26.如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且的面积为5,求点P的坐标.
参考答案一、选择题(每题4分,共48分)1、C【解析】依次在各图形上查看三点的位置来判断;或用排除法来排除错的,选择正确也可以.【详解】根据点在内,则A、B都不符合描述,排除A、B;又因为点,分别是边,的中点,选项D中点D在BC上不符合描述,排除D选项,只有选项C符合描述.故选:C【点睛】本题考查了根据数学语言描述来判断图形.2、A【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.【详解】∵二次函数y=ax2+bx+c(a≠1)的图象与x轴有两个交点,∴b2﹣4ac>1,故①正确;∵该函数图象的对称轴是x=﹣1,当x=1时的函数值小于﹣1,∴x=﹣2时的函数值和x=1时的函数值相等,都小于﹣1,∴4a﹣2b+c<﹣1,故②错误;∵该函数图象的对称轴是x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,∴﹣3<x,1<﹣2,故③正确;∵当x=﹣1时,该函数取得最小值,∴当m为任意实数时,a﹣b≤am2+bm,故④正确;∵1,∴b=2a.∵x=1时,y=a+b+c>1,∴3a+c>1,故⑤错误.故选:A.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数图象与系数的关系、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.3、C【解析】试题分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋转角等于125°.故选C.4、B【解析】试题分析:∵OB=OC,∠OCB=40°,∴∠BOC=180°-2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°.故选B.5、A【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.6、C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.7、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既不是轴对称图形,也不是中心对称图形,故此选项错误;D、既是轴对称图形,也是中心对称图形,不符合题意,故此选项错误.故选A.【点睛】此题主要考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.9、B【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴,解得:,所以解析式为:y=x2+x+,当x=2.75时,y=,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣=,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键10、B【解析】A.至少有1个球是红球是随机事件,选项错误;B.至少有1个球是白球是必然事件,选项正确;C.至少有2个球是红球是随机事件,选项错误;D.至少有2个球是白球是随机事件,选项错误.故选B.11、B【分析】由题意可知原方程的根的判别式△>0,由此可得关于m的不等式,求出不等式的解集后再结合方程的二次项系数不为0即可求出答案.【详解】解:由题意可知:△=4m2﹣4(m﹣1)2>0,解得:∴m>,∵m﹣1≠0,∴m≠1,∴m的范围是:m>且m≠1.故选:B.【点睛】本题考查了一元二次方程的根的判别式和一元一次不等式的解法等知识,属于基本题型,熟练掌握一元二次方程的根的判别式与方程根的个数的关系是解题关键.12、A【解析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且相似比为1:2,即可得到,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4).【详解】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,
∵点B的坐标为(-1,2),
∴BC=1,OC=2,
∵△AOB和△A1OB1相似,且相似比为1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,
∴△BOC∽△B1OD,
∴OD=2OC=4,B1D=2BC=2,
∴点B1的坐标为(2,-4),
故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.二、填空题(每题4分,共24分)13、1
【分析】根据口袋中装有白球3个,黑球5个,黄球n个,故球的总个数为3+5+n,再根据黄球的概率公式列式解答即可.【详解】∵口袋中装有白球3个,黑球5个,黄球n个,∴球的总个数为3+5+n,∵从中随机摸出一个球,摸到白色球的概率为,即,解得:n=1,故答案为:1.【点睛】本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、【分析】如图(见解析),先根据等腰直角三角形的判定与性质可得,设,从而可得,再在中,利用直角三角形的性质、勾股定理可得,由此即可得出答案.【详解】如图,过点E作于点F,由题意得:,,是等腰直角三角形,,设,则,在中,,,,解得,则,故答案为:.【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形的性质、勾股定理等知识点,通过作辅助线,构造两个直角三角形是解题关键.15、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)【分析】根据相似三角形的判定解答即可.【详解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案为:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【点睛】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答.16、180°【详解】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得2πr2=×2πr×R,故R=2r.由l扇形弧长=得:2πr=解得n=180°.故答案为:180°【点睛】本题考查扇形面积和弧长公式以及圆锥侧面积的计算,掌握相关公式正确计算是解题关键.17、4【分析】直接利用二次根式的性质化简得出答案.【详解】解:原式.故答案为【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.18、6【分析】接运用平行线分线段成比例定理列出比例式,借助已知条件即可解决问题.【详解】,∵DE∥BC,∴,即,解得:,故答案为:.【点睛】本题主要考查了平行线分线段成比例定理及其应用问题;运用平行线分线段成比例定理正确写出比例式是解题的关键.三、解答题(共78分)19、这个圆锥的底面半径为5cm,母线长为1cm.【分析】根据圆锥的母线即为其侧面展开图的扇形半径,圆锥底面圆的周长等于扇形弧长,可设底面半径为r,则易得圆锥的母线长即为扇形半径为2r,利用圆锥表面积公式求解即可.【详解】解:设这个圆锥的底面半径为rcm,∵圆锥的轴截面△ABC是等边三角形,∴圆锥母线的长为2rcm,∵圆锥的母线即为扇形半径,圆锥底面圆的周长等于扇形弧长,扇形面积+底面圆的面积=圆锥表面积.∴×2πr×2r+πr2=75π,解得:r=5,∴2r=1.故这个圆锥的底面半径为5cm,母线长为1cm.【点睛】此题主要考查了圆锥的相关知识,明确圆锥的母线即为其侧面展开图的扇形半径,圆锥底面圆的周长等于扇形弧长是解题关键.20、(1);(2);(3),.【分析】(1)根据概率的意义直接计算即可解答.
(2)找出两张牌牌面数字的和是6的情况再与所有情况相比即可解答.
(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【详解】解:(1)1,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)只有2+4=6,但组合一共有3+2+1=6,故概率为;(3)列表如下:第二次第一次1234111121314221222324331323334441424344其中恰好是3的倍数的有12,21,24,33,42五种结果.所以,P(3的倍数)=.故答案为:,.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21、(1);(2)证明见解析.【解析】试题分析:一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.(1)直接把x=1代入方程x2+mx+m﹣2=0求出m的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.考点:根的判别式;一元二次方程的解.22、(1)点坐标,点坐标;(2);(3)是定值,定值为8【分析】(1)由OA、OB的长可得A、B两点坐标;(2)结合题意可设抛物线的解析式为,将点C坐标代入求解即可;(3)过点作轴交轴于,设,可用含t的代数式表示出,,的长,利用,的性质可得EF、EG的长,相加可得结论.【详解】(1)由抛物线交轴于、两点(在的左侧),且,,得点坐标,点坐标;(2)设抛物线的解析式为,把点坐标代入函数解析式,得,解得,抛物线的解析式为;(3)(或是定值),理由如下:过点作轴交轴于,如图设,则,,,∵,∴,∴,∴又∵,∴,∴,∴∴【点睛】本题考查了抛物线与三角形的综合,涉及的知识点主要有抛物线的解析式、相似三角形的判定和性质,灵活利用点坐标表示线段长是解题的关键.23、(1)2017年底至2019年底该市汽车拥有量的年平均增长率为25%;(2)2019年底至2020年底该市汽车拥有量的年增长率要小于等于26%才能达到要求.【分析】(1)设2017年底至2019年底该市汽车拥有量的年平均增长率为x,根据2017年底及2019年底该市汽车拥有量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设2019年底至2020年底该市汽车拥有量的年增长率为y,根据2020年底全市汽车拥有量不超过118万辆,即可得出关于y的一元一次不等式,解之即可得出结论.【详解】解:(1)设2017年底至2019年底该市汽车拥有量的年平均增长率为x,依题意,得:64(1+x)2=100,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:2017年底至2019年底该市汽车拥有量的年平均增长率为25%.(2)设2019年底至2020年底该市汽车拥有量的年增长率为y,依题意,得:100(1+y)﹣100×8%≤118,解得:y≤0.26=26%.答:2019年底至2020年
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电子装联专用设备项目建设总纲及方案
- 2025年磁粉探伤机项目建议书
- 护理原发性支气管肺癌
- 陕西航空职业技术学院《英语阅读实验教学》2023-2024学年第二学期期末试卷
- 护理类说课大赛
- 雅安职业技术学院《看新闻背单词》2023-2024学年第二学期期末试卷
- 集美大学《西方哲学史》2023-2024学年第一学期期末试卷
- 青岛恒星科技学院《实验基础和仪器分析》2023-2024学年第二学期期末试卷
- 青岛滨海学院《中学生物学实验研究》2023-2024学年第二学期期末试卷
- 青岛电影学院《景观设计3》2023-2024学年第一学期期末试卷
- 对配合和服从总包管理的认识和协调方案
- 2025年上海市各区高三语文一模试题汇编之文言文阅读试题和答案
- 江苏省常州市金坛区2023-2024学年小升初语文试卷(有答案)
- 专题11 浮力 课件中考物理复习
- 《桥梁工程中的预应力混凝土技术》课件
- 学习通《形势与政策》2025春章节测试答案
- DeepSeek介绍及其典型使用案例
- 危险性较大的分部分项工程安全监理实施细则
- 2025年四川省国有资产经营投资管理有限责任公司招聘笔试参考题库附带答案详解
- AQ 1021-2006 煤矿采掘工作面高压喷雾降尘技术规范(正式版)
- 浦发银行个人信用报告异议申请表
评论
0/150
提交评论