




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.函数与()在同一坐标系中的图象可能是()A. B. C. D.2.下列对于二次根式的计算正确的是()A. B.2=2C.2=2 D.2=3.如图,△∽△,若,,,则的长是()A.2 B.3 C.4 D.54.将抛物线y=x2﹣2向右平移3个单位长度,再向上平移2个单位长度,则所得抛物线的解析式为()A.y=(x+3)2 B.y=(x﹣3)2 C.y=(x+2)2+1 D.y=(x﹣2)2+15.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有()A.②③ B.②③④ C.②③⑤ D.②③④⑤6.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD等于()A.75° B.95° C.100° D.105°7.反比例函数与正比例函数在同一坐标系中的大致图象可能是()A. B.C. D.8.下列图形中一定是相似形的是()A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形9.如图,在中,,,为边上的一点,且.若的面积为,则的面积为()A. B. C. D.10.下列函数中,的值随着逐渐增大而减小的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.12.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为_______米.13.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为,根据题意可列方程为______.14.如图,Rt△ABC中,∠A=90°,∠B=30°,AC=6,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分面积为__________.(结果保留π)15.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.16.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.17.如图,在中,,棱长为1的立方体的表面展开图有两条边分别在,上,有两个顶点在斜边上,则的面积为__________.18.已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了________米三、解答题(共66分)19.(10分)在下列的网格中,横、纵坐标均为整数的点叫做格点,例如正方形的顶点,都是格点.要求在下列问题中仅用无刻度的直尺作图.
(1)画出格点,连(或延长)交边于,使,写出点的坐标.(2)画出格点,连(或延长)交边于,使,则满足条件的格点有个.20.(6分)如图,抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.(1)求此抛物线的表达式;(2)求过B、C两点的直线的函数表达式;(3)点P是第一象限内抛物线上的一个动点.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点P的坐标,若不存在,请说明理由;21.(6分)如图1为放置在水平桌面上的台灯,底座的高为,长度均为的连杆,与始终在同一平面上.当,时,如图2,连杆端点离桌面的高度是多少?22.(8分)小王去年开了一家微店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同,试求每月盈利的平均增长率.23.(8分)解方程:(1)x2﹣2x﹣3=1;(2)x(x+1)=1.24.(8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1).从A、D、E、F四点中任意取一点,以所取的这一点及B、C为顶点三角形,则所画三角形是等腰三角形的概率是;(2).从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表求解).25.(10分)如图,AB为⊙O的直径,点C为⊙O上一点,CH⊥AB于H,∠CAB=30°.(1)如图1,求证:AH=3BH.(2)如图2,点D为AB下方⊙O上一点,点E为AD上一点,若∠BOE=∠CAD,连接BD,求证:OE=BD.(3)如图3,在(2)的条件下,连接CE,若CE⊥AD,OA=14,求BD的长.26.(10分)已知抛物线y=2x2-12x+13(1)当x为何值时,y有最小值,最小值是多少?(2)当x为何值时,y随x的增大而减小(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据反比例函数与一次函数的图象特点解答即可.【详解】时,,在一、二、四象限,在一、三象限,无选项符合.时,,在一、三、四象限,()在二、四象限,只有D符合;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由的取值确定函数所在的象限.2、C【解析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选C.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、C【分析】根据相似三角形的性质,列出对应边的比,再根据已知条件即可快速作答.【详解】解:∵△∽△∴∴解得:AB=4故答案为C.【点睛】本题主要考查了相似三角形的性质,解题的关键是找对相似三角形的对应边,并列出比例进行求解.4、B【分析】利用二次函数图象的平移规律,左加右减,上加下减,进而得出答案.【详解】将抛物线y=x2﹣2向右平移3个单位长度,得到平移后解析式为:y=(x﹣3)2﹣2,∴再向上平移2个单位长度所得的抛物线解析式为:y=(x﹣3)2﹣2+2,即y=(x﹣3)2;故选:B.【点睛】考核知识点:二次函数图象.理解性质是关键.5、D【分析】根据二次函数的图像与性质即可得出答案.【详解】由图像可知,a<0,b<0,故①错误;∵图像与x轴有两个交点∴,故②正确;当x=-3时,y=9a﹣3b+c,在x轴的上方∴y=9a﹣3b+c>0,故③正确;∵对称轴∴b-4a=0,故④正确;由图像可知,方程ax1+bx=0的两个根为x1=0,x1=﹣4,故⑤正确;故答案选择D.【点睛】本题考查的是二次函数的图像与性质,难度系数中等,解题关键是根据图像判断出a,b和c的值或者取值范围.6、D【解析】试题解析:连接故选D.点睛:圆内接四边形的对角互补.7、A【分析】分a>0和a<0两种情况,根据反比例函数与正比例函数的图象的性质判断即可.【详解】解:当a>0时,反比例函数图象在一、三象限,正比例函数图象经过一、二、三象限;当a<0,反比例函数图象在二、四象限,正比例函数图象经过二、三、四象限.故选:A.【点睛】本题考查的知识点是反比例函数与正比例函数图象的性质,熟记性质内容是解此题的关键.8、B【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.9、C【分析】根据相似三角形的判定定理得到,再由相似三角形的性质得到答案.【详解】∵,,∴,∴,即,解得,的面积为,∴的面积为:,故选C.【点睛】本题考查相似三角形的判定定理和性质,解题的关键是熟练掌握相似三角形的判定定理和性质.10、D【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【详解】A选项函数的图象是随着增大而增大,故本选项错误;B选项函数的对称轴为,当时随增大而减小故本选项错误;C选项函数,当或,随着增大而增大故本选项错误;D选项函数的图象是随着增大而减小,故本选项正确;故选D.【点睛】本题考查了三种函数的性质,了解它们的性质是解答本题的关键,难度不大.二、填空题(每小题3分,共24分)11、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【点睛】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.12、2【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【详解】解:∵DE∥AB,DF∥AC,
∴△DEF∽△ABC,
∴,
即,
∴AC=6×1.5=2米.
故答案为:2.【点睛】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.13、【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【详解】解:根据题意,得:.故答案为:.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为:.14、9﹣3π【解析】试题解析:连结AD.∵直角△ABC中,∠A=90°,∠B=30°,AC=6,∴∠C=60°,AB=6,∵AD=AC,∴三角形ACD是等边三角形,∴∠CAD=60°,∴∠DAE=30°,∴图中阴影部分的面积=15、0.4m【分析】先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.【详解】∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO.∵∠AOB=∠COD,∴△OAB∽△OCD,∴AO:CO=AB:CD,∴4:1=1.6:CD,∴CD=0.4.故答案为0.4.【点睛】本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.16、【分析】连接CE,过点B作BH⊥CD交CD的延长线于点H,可证四边形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分线的性质可得BE=CE,CD=BD,可证CE=BE=CD=DB,通过证明Rt△ACE≌Rt△HBD,可得AE=DH,通过证明△ACD∽△DHB,可得AC2=AE•BE,由勾股定理可得BE2﹣AE2=AC2,可得关于BE,AE的方程,即可求解.【详解】解:连接CE,过点B作BH⊥CD交CD的延长线于点H,∵AC是半圆的切线∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四边形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直径,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE•BE,∴BE2﹣AE2=AE•BE,∴BE=AE,∴故答案为:.【点睛】本题考察垂直平分线的性质、矩形的性质和相似三角形,解题关键是连接CE,过点B作BH⊥CD交CD的延长线于点H,证明出四边形ACHB是矩形.17、16【解析】根据题意、结合图形,根据相似三角形的判定和性质分别计算出CB、AC即可.【详解】解:由题意得:DE∥MF,所以△BDE∽△BMF,所以,即,解得BD=1,同理解得:AN=6;又因为四边形DENC是矩形,所以DE=CN=2,DC=EN=3,所以BC=BD+DC=4,AC=CN+AN=8,的面积=BC×AC÷2=4×8÷2=16.故答案为:16.【点睛】本题考查正方形的性质和相似三角形的判定和性质,解题的关键是需要对正方形的性质、相似三角形的判定和性质熟练地掌握.18、.【分析】利用垂直高度,求出水平宽度,利用勾股定理求解即可.【详解】解:如图所示:根据题意,在Rt△ABC中,BC=2m,,解得AC=40m,根据勾股定理m.故答案为:.【点睛】此题主要考查解直角三角形的应用,勾股定理.理解坡度坡角的定义,由勾股定理得出AB是解决问题的关键.三、解答题(共66分)19、(1)或或;(2)3个【分析】(1)根据题意可得E为BC中点,找到D关于直线BC的对称点M3,再连接AM3,即可得到3个格点;(2)根据题意,延长BC,由,得CF=3DF,故使CN3=3AD,连接AN3,即可得到格点.【详解】(1)如图,或或(2)如图,N的个数为3个,故答案为:3.【点睛】此题主要考查图形与坐标,解题的关键是熟知对称性与相似三角形的应用.20、(1)y=﹣x2+x+4;(2)y=﹣x+4;(3)存在,(1,4)或(,).【分析】(1)将点A,B的坐标代入y=﹣x2+bx+c即可;(2)先求出点C的坐标为(0,4),设直线BC的解析式为y=kx+4,再将点B(4,0)代入y=kx+4即可;(3)先判断存在点P,求出AC,BC的长及∠OCB=∠OBC=45°,设点P坐标为(m,﹣m2+m+4),则点Q(m,﹣m+4),用含m的代数式表示出QM,AM的长,然后分①当AC=AQ时,②当AC=CQ时,③当CQ=AQ时三种情况进行讨论,列出关于m的方程,求出m的值,即可写出点P的坐标.【详解】(1)将点A(﹣3,0),B(4,0)代入y=﹣x2+bx+c,得,,解得,,∴此抛物线的表达式为y=﹣x2+x+4;(2)在y=﹣x2+x+4中,当x=0时,y=4,∴C(0,4),设直线BC的解析式为y=kx+4,将点B(4,0)代入y=kx+4,得,k=﹣1,∴直线BC的解析式为y=﹣x+4;(3)存在,理由如下:∴A(﹣3,0),B(4,0),C(0,4),∴OA=3,OC=OB=4,∴AC==5,BC==4,∠OCB=∠OBC=45°,设点P坐标为(m,﹣m2+m+4),则点Q(m,﹣m+4),∴QM=﹣m+4,AM=m+3,①当AC=AQ时,则AC=AQ=5,(m+3)2+(﹣m+4)2=25,解得:m1=1,m2=0(舍去),当m=1时,﹣m2+m+4=4,则点P坐标为(1,4);②当AC=CQ时,CQ=AC=5,如图,过点Q作QD⊥y轴于点D,则QD=CD=OM=m,则有2m2=52,解得m1=,m2=﹣(舍去);当m=时,﹣m2+m+4=,则点P坐标为(,);③当CQ=AQ时,(m+3)2+(﹣m+4)2=2m2,解得:m=(舍去);故点P的坐标为(1,4)或(,).【点睛】本题考查求二次函数解析式、求二元一次方程解析式和解二次函数,解题的关键是掌握求二次函数解析式、求二元一次方程解析式和解二次函数.21、【分析】作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.判断四边形PCHG是矩形,求出DP,CH,再加上AB即可求出DF.【详解】解:如图,作于,于,于,于.则四边形是矩形,,,,,∴,,,.∴连杆端点D离桌面l的高度是.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22、【分析】设该商店的每月盈利的平均增长率为x,根据“2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同”,列出关于x的一元二次方程,解之即可.【详解】设该商店的每月盈利的平均增长率为x,根据题意得:2400(1+x)2=3456,解得:x1=0.2,x2=−2.2(舍去),答:每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.23、(1);(2)【分析】(1)利用因式分解法求解可得;(2)根据因式分解的性质,直接得到答案即可.【详解】解:(1)x2﹣2x﹣3=1;(2).【点睛】本题考查了解一元二次方程,应熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24、(1)(2)【分析】(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,即可得出答案;(2)利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率.【详解】解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,所画三角形是等腰三角形的概率P=;故答案为(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P==.考点:列表法与树状图法;等腰三角形的判定;平行四边形的判定.25、(1)证明见解析;(2)证明见解析;(3)BD=2.【分析】(1)连接BC,根据直角三角形中,30度所对的直角边是斜边的一半,可得:AB=2BC,BC=2BH,可得结论;(2)由(1)得AB=2BC,AB=2OA,得OA=BC,利用ASA证明△OAE≌△BCD,可得结论;(3)过O作OM⊥AD于M,先证明∠OEA=∠BAC=30°,设OM=x,则ME=x,由△OAE≌△BCD,则∠DCE=30°,设AM=MD=y,则AE=y+x,DE=y﹣x,根据AE=2DE列等式得:y=3x,根据勾股定理列方程可得x的值,可得:BD=2OM=2.【详解】(1)证明:如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=30°,∴∠ABC=60°,AB=2BC,∵CH⊥AB,∴∠BCH=30°,∴BC=2BH,∴AB=4BH,∴AH=3BH,(2)证明:连接BC、DC,∵∠CAD+∠CBD=180°,∠BOE=∠CAD,∴∠BOE+∠CBD=180°,∵∠BOE+∠AOE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电子装联专用设备项目建设总纲及方案
- 2025年磁粉探伤机项目建议书
- 护理原发性支气管肺癌
- 陕西航空职业技术学院《英语阅读实验教学》2023-2024学年第二学期期末试卷
- 护理类说课大赛
- 雅安职业技术学院《看新闻背单词》2023-2024学年第二学期期末试卷
- 集美大学《西方哲学史》2023-2024学年第一学期期末试卷
- 青岛恒星科技学院《实验基础和仪器分析》2023-2024学年第二学期期末试卷
- 青岛滨海学院《中学生物学实验研究》2023-2024学年第二学期期末试卷
- 青岛电影学院《景观设计3》2023-2024学年第一学期期末试卷
- 中国子宫内膜增生管理指南(2022)解读
- 污水处理站操作人员安全培训手册
- DL-T5418-2009火电厂烟气脱硫吸收塔施工及验收规程
- 2024内蒙古自治区公务员考试数量关系专项练习题含答案(巩固)
- 2024年山西林业职业技术学院单招职业技能测试题库附答案
- 旅游概论(刘伟主编)(全国高职高专旅游类“十二五”示范教材) 全套课件(上)
- 19J102-1 19G613混凝土小型空心砌块墙体建筑与结构构造
- 2024届高考二轮复习备考 有机化学基础 课件(共35张)
- 贵州省情知识考试总题库(含答案)
- 女职工权益保护
- 抽水蓄能电站工程岩锚梁砼施工监理控制措施
评论
0/150
提交评论