版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.122.已知的三边长分别为、、,且满足,则的形状是().A.等边三角形 B.等腰三角形 C.等腰直角三角形 D.直角三角形3.已知,二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是()x…-1013…y…0343…A.(2,0) B.(3,0) C.(4,0) D.(5,0)4.相邻两根电杆都用锅索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米B.8米C.3米D.必须知道两根电线杆的距离才能求出点P离地面距离5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.或 B. C. D.或6.下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角 B.都含有一个50°的内角C.都含有一个60°的内角 D.都含有一个70°的内角7.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=(k≠0)经过点C,则k的值为()A.12 B.15 C.20 D.328.的直径为,点与点的距离为,点的位置()A.在⊙O外 B.在⊙O上 C.在⊙O内 D.不能确定9.下列运算正确的是()A. B.C. D.10.某药品经过两次降价,每瓶零售价由112元降为63元.已知两次降价的百分率相同.要求每次降价的百分率,若设每次降价的百分率为x,则得到的方程为()A.112(1﹣x)2=63B.112(1+x)2=63C.112(1﹣x)=63D.112(1+x)=6311.下列事件中,必然事件是()A.打开电视,正在播放宜春二套 B.抛一枚硬币,正面朝上C.明天会下雨 D.地球绕着太阳转12.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.将方程化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为____.14.若正六边形的边长为2,则此正六边形的边心距为______.15.如图,在平面直角坐标系中,点,点,作第一个正方形且点在上,点在上,点在上;作第二个正方形且点在上,点在上,点在上…,如此下去,其中纵坐标为______,点的纵坐标为______.16.当﹣1≤x≤3时,二次函数y=﹣(x﹣m)2+m2﹣1可取到的最大值为3,则m=_____.17.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.18.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.三、解答题(共78分)19.(8分)如图,已知一次函数y1=ax+b的图象与x轴、y轴分别交于点D、C,与反比例函数y2=的图象交于A、B两点,且点A的坐标是(1,3)、点B的坐标是(3,m).(1)求一次函数与反比例函数的解析式;(2)求C、D两点的坐标,并求△AOB的面积;(3)根据图象直接写出:当x在什么取值范围时,y1>y2?20.(8分)如图,AB和DE是直立在地面上的两根立柱.AB=6m,某一时刻AB在阳光下的投影BC=4m(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为9m,请你计算DE的长.21.(8分)(1)已知:如图1,为等边三角形,点为边上的一动点(点不与、重合),以为边作等边,连接.求证:①,②;(2)如图2,在中,,,点为上的一动点(点不与、重合),以为边作等腰,(顶点、、按逆时针方向排列),连接,类比题(1),请你猜想:①的度数;②线段、、之间的关系,并说明理由;(3)如图3,在(2)的条件下,若点在的延长线上运动,以为边作等腰,(顶点、、按逆时针方向排列),连接.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结,若,,直接写出的长.22.(10分)已知关于x的一元二次方程.(1)当m为何值时,方程有两个不相等的实数根?(2)设方程两根分别为、,且2、2分别是边长为5的菱形的两条对角线,求m的值.23.(10分)已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A.B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=.(l)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.24.(10分)某校为了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成如图所示两幅不完整的统计图,请根据统计图回答下列问题:(1)补全条形统计图并填空,本次调查的学生共有名,估计该校2000名学生中“不了解”的人数为.(2)“非常了解”的4人中有A1、A2两名男生,B1、B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到两名男生的概率.25.(12分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.26.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,,求OM的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.2、D【分析】根据非负数性质求出a,b,c,再根据勾股定理逆定理解析分析.【详解】因为所以a-5=0,b-12=0,13-c=0所以a=5,b=12,c=13因为52+122=132所以a2+b2=c2所以以的三边长分别为、、的三角形是直角三角形.故选:D【点睛】考核知识点:勾股定理逆定理.根据非负数性质求出a,b,c是关键.3、C【分析】根据(0,3)、(3,3)两点求得对称轴,再利用对称性解答即可.【详解】解:∵抛物线y=ax2+bx+c经过(0,3)、(3,3)两点,
∴对称轴x==1.5;
点(-1,0)关于对称轴对称点为(4,0),
因此它的图象与x轴的另一个交点坐标是(4,0).
故选C.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.4、A【分析】如图,作PE⊥BC于E,由CD//AB可得△APB∽△CPD,可得对应高CE与BE之比,根据CD∥PE可得△BPE∽△BDC,利用对应边成比例可得比例式,把相关数值代入求解即可.【详解】如图,作PE⊥BC于E,∵CD∥AB,∴△APB∽△CPD,∴,∴,∵CD∥PE,∴△BPE∽△BDC,∴,∴,解得:PE=2.1.故选:A.【点睛】本题考查相似三角形的应用,平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;正确作出辅助线构建相似三角形并熟练掌握相似三角形的判定定理是解题关键.5、D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或-即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为,把△ABO缩小,
∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).
故选D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.6、C【解析】试题解析:因为A,B,D给出的角可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C.有一个的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.7、D【分析】分别过点D,C作x轴的垂线,垂足为M,N,先利用勾股定理求出菱形的边长,再利用Rt△ODM≌Rt△BCN得出BN=OM,则可确定点C的坐标,将C点坐标代入反比例函数解析式中即可求出k的值.【详解】如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD=∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入得,k=8×4=32,故选:D.【点睛】本题主要考查勾股定理,全等三角形的性质,待定系数法求反比例函数的解析式,掌握全等三角形的性质及待定系数法是解题的关键.8、A【分析】由⊙O的直径为15cm,O点与P点的距离为8cm,根据点与圆心的距离与半径的大小关系,即可求得答案.【详解】∵⊙O的直径为15cm,∴⊙O的半径为7.5cm,∵O点与P点的距离为8cm,∴点P在⊙O外.故选A.【点睛】此题考查了点与圆的位置关系.注意点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.9、D【分析】根据题意利用合并同类项法则、完全平方公式、同底数幂的乘法运算法则及幂的乘方运算法则,分别化简求出答案.【详解】解:A.合并同类项,系数相加字母和指数不变,,此选项不正确;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此选项错误;C.,同底数幂乘法底数不变指数相加,a2·a3=a5,此选项不正确;D.,幂的乘方底数不变指数相乘,(-a)4=(-1)4.a4=a4,此选项正确.故选:D【点睛】本题考查了有理式的运算法则,合并同类项的关键正确判断同类项,然后按照合并同类项的法则进行合并;遇到幂的乘方时,需要注意若括号内有“-”时,其结果的符号取决于指数的奇偶性.10、A【解析】根据题意可得等量关系:原零售价×(1-百分比)(1-百分比)=降价后的售价,然后根据等量关系列出方程即可.【详解】设每次降价的百分率为x,由题意得:112(1−x)2=63,故答案选:A.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是熟练的掌握由实际问题抽象出一元二次方程.11、D【解析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【详解】解:、打开电视,正在播放宜春二套,是随机事件,故错误;、抛一枚硬币,正面朝上是随机事件,故错误;、明天会下雨是随机事件,故错误;、地球绕着太阳转是必然事件,故正确;故选:.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、D【分析】过点C作CD⊥x轴交于点D,连接OC,则CD∥OB,得AO=OD,CD=2OB,进而得的面积为4,即可得到答案.【详解】过点C作CD⊥x轴交于点D,连接OC,则CD∥OB,∵,∴AO=OD,∴OB是∆ADC的中位线,∴CD=2OB,∵的面积为,∴的面积为4,∵点在反比例函数的图象上,∴k=2×4=8,故选D.【点睛】本题主要考查反比例函数比例系数k的几何意义,添加辅助线,求出的面积,是解题的关键.二、填空题(每题4分,共24分)13、5,.【分析】一元二次方程化为一般形式后,找出一次项系数与常数项即可.【详解】解:方程整理得:,则一次项系数、常数项分别为5,;故答案为:5,.【点睛】此题考查了一元二次方程的一般形式,其一般形式为.14、.【分析】连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.【详解】连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.15、【分析】先确定直线AB的解析式,然后再利用正方形的性质得出点C1和C2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB的解析式y=kx+b则有:,解得:所以直线仍的解析式是:设C1的横坐标为x,则纵坐标为∵正方形OA1C1B1∴x=y,即,解得∴点C1的纵坐标为同理可得:点C2的纵坐标为=∴点Cn的纵坐标为.故答案为:,.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.16、﹣1.5或1.【分析】根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值.【详解】∵当﹣1≤x≤3时,二次函数y=﹣(x﹣m)1+m1﹣1可取到的最大值为3,∴当m≤﹣1时,x=﹣1时,函数取得最大值,即3=﹣(﹣1﹣m)1+m1﹣1,得m=﹣1.5;当﹣1<m<3时,x=m时,函数取得最大值,即3=m1﹣1,得m1=1,m1=﹣1(舍去);当m≥3时,x=3时,函数取得最大值,即3=﹣(3﹣m)1+m1﹣1,得m=(舍去);由上可得,m的值为﹣1.5或1,故答案为:﹣1.5或1.【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质,分类讨论是解题的关键.17、【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵theorem中的7个字母中有2个字母e,∴任取一张,那么取到字母e的概率为.18、3【解析】试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.三、解答题(共78分)19、(1)y1=,y1=﹣x+4;(1)4;(3)当x满足1<x<3、x<2时,则y1>y1.【分析】(1)把点A(1,3)代入y1=,求出k,得到反比例函数的解析式;再把B(3,m)代入反比例函数的解析式,求出m,得到点B的坐标,把A、B两点的坐标代入y1=ax+b,利用待定系数法求出一次函数的解析式;
(1)把x=2代入一次函数解析式,求出y1=4,得到C点的坐标,把y1=2代入一次函数解析式,求出x=4,得到D点坐标,再根据S△AOB=S△AOD-S△BOD,列式计算即可;
(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可.【详解】解:(1)把点A(1,3)代入y1=,则3=,即k=3,故反比例函数的解析式为:y1=.把点B的坐标是(3,m)代入y1=,得:m==1,∴点B的坐标是(3,1).把A(1,3),B(3,1)代入y1=ax+b,得,解得,故一次函数的解析式为:y1=﹣x+4;(1)令x=2,则y1=4;令y1=2,则x=4,∴C(2,4),D(4,2),∴S△AOB=S△AOD﹣S△BOD=×4×3﹣×4×1=4;(3)由图像可知x<2、1<x<3时,一次函数落在反比例函数图象上方,故满足y1>y1条件的自变量的取值范围:1<x<3、x<2.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,难度适中.利用了数形结合思想.20、(1)见解析;(2)13.5m.【分析】(1)直接利用平行投影的性质得出答案;(2)利用同一时刻实际物体的影子与物体的高度比值相同进而得出答案.【详解】解:(1)如图所示:EF即为所求;(2)∵AB=6m,某一时刻AB在阳光下的投影BC=4m,DE在阳光下的投影长为9m,∴=,解得:DE=13.5m,答:DE的长为13.5m.【点睛】此题主要考查相似三角形的判定与性质,解题法的关键是熟知平行线的性质.21、(1)①见解析;②∠DCE=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明见解析;(3)①(1)中的结论还成立,②AE=.【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出∠DCE=110°;
(1)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE1+CD1=DE1,即可得到BD1+CD1=DE1;
(3)①运用(1)中的方法得出BD1+CD1=DE1;②根据Rt△BCE中,BE=10,BC=6,求得进而得出CD=8-6=1,在Rt△DCE中,求得最后根据△ADE是等腰直角三角形,即可得出AE的长.【详解】(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明:如图1,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE1+CD1=DE1,∴BD1+CD1=DE1;(3)①(1)中的结论还成立.
理由:如图3,∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE,
在△ABD与△ACE中,∴△ABD≌△ACE(SAS),
∴∠ABC=∠ACE=45°,BD=CE,
∴∠ABC+∠ACB=∠ACE+∠ACB=90°,
∴∠BCE=90°=∠ECD,
∴Rt△DCE中,CE1+CD1=DE1,
∴BD1+CD1=DE1;②∵Rt△BCE中,BE=10,BC=6,∴BD=CE=8,
∴CD=8-6=1,
∴Rt△DCE中,∵△ADE是等腰直角三角形,【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用,解决问题的关键是掌握全等三角形的对应边相等,对应角相等.解题时注意:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.22、(1);(2)【分析】(1)由根的判别式即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得,又由一元二次方程根与系数的关系,所以有,据此列出关于m的方程求解.【详解】(1)∵方程有两个不相等的实数根,∴解得:∴当时,方程有两个不相等的实数根;(2)由题意得:∴解得:或∵2、2分别是边长为5的菱形的两条对角线∴,即∴【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键.23、(1)反比例函数解析式为y=,一次函数解析式为y=x+3;(2)(﹣6,0).【分析】(1)过B点作BD⊥x轴,垂足为D,由B(n,-2)得BD=2,由tan∠BOC="2/5",解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A、B两点横坐标与纵坐标的积相等求n的值,由“两点法”求直线AB的解析式;(2)点E为x轴上的点,要使得△BCE与△BCO的面积相等,只需要CE=CO即可,根据直线AB解析式求CO,再确定E点坐标.【详解】解:(1)过B点作BD⊥x轴,垂足为D,∵B(n,﹣2),∴BD=2,在Rt△OBD在,tan∠BOC=,即,解得OD=5,又∵B点在第三象限,∴B(﹣5,﹣2),将B(﹣5,﹣2)代入y=中,得k=xy=10,∴反比例函数解析式为y=,将A(2,m)代入y=中,得m=5,∴A(2,5),将A(2,5),B(﹣5,﹣2)代入y=ax+b中,得,解得,则一次函数解析式为y=x+3;(2)由y=x+3得C(﹣3,0),即OC=3,∵S△BCE=S△BCO,∴CE=OC=3,∴OE=6,即E(﹣6,0).24、(1)图详见解析,50,600;(2).【分析】(1)由“非常了解”的人数及其所占百分比求得总人数,继而由各了解程度的人数之和等于总人数求得“不了解”的人数,用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好抽到2名男生的结果数,利用概率公式计算可得.【详解】解:(1)本次调查的学生总人数为4÷8%=50人,则不了解的学生人数为50﹣(4+11+20)=15人,∴估计该校2000名学生中“不了解”的人数约有2000×=600人,补图如下:故答案为:50、600;(2)画树状图如下:共有12种可能的结果,恰好抽到2名男生的结果有2个,∴P(恰好抽到2名男生)==.【点睛】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国办公家具行业转型升级模式及投资规划分析报告
- 2024-2030年中国冶金锰矿融资商业计划书
- 2024年工程招投标与合同执行细则
- 2024年二手房买卖三方协议
- 2024年商务酒店客房长期租赁合同
- 2023年阳春市殡仪馆招聘人员考试真题
- 2024年共享出行驾驶员外包协议
- 2023年三明市大田县教育局教师考试真题
- 2024年城市配送运输合同解读
- 2023年湖州地区录用公务员考试真题
- 高标准农田建设示范工程质量管理体系与措施
- 学生顶岗实习安全教育课件
- 公司组织架构图模板课件
- 辽宁省葫芦岛市各县区乡镇行政村村庄村名居民村民委员会明细
- 植物种子的传播方式课件
- 百合干(食品安全企业标准)
- 咨询服务合同之补充协议
- T∕CSCS 012-2021 多高层建筑全螺栓连接装配式钢结构技术标准-(高清版)
- 急诊科临床诊疗指南-技术操作规范更新版
- 名字的来历-完整版PPT
- 公路新建工程标准化质量管理手册
评论
0/150
提交评论