广东省佛山市南海区狮山镇2022年数学九年级第一学期期末质量检测模拟试题含解析_第1页
广东省佛山市南海区狮山镇2022年数学九年级第一学期期末质量检测模拟试题含解析_第2页
广东省佛山市南海区狮山镇2022年数学九年级第一学期期末质量检测模拟试题含解析_第3页
广东省佛山市南海区狮山镇2022年数学九年级第一学期期末质量检测模拟试题含解析_第4页
广东省佛山市南海区狮山镇2022年数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A.100° B.110° C.120° D.130°2.二次函数与的图象与x轴有交点,则k的取值范围是A. B.且 C. D.且3.已知,,且的面积为,周长是的周长的,,则边上的高等于()A. B. C. D.4.如图,△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是()A. B.C. D.5.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有()个.(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GEA.1 B.2 C.3 D.46.如图,已知点在的边上,若,且,则()A. B. C. D.7.如图,∠AOB是放置在正方形网格中的一个角,则tan∠AOB()A. B. C.1 D.8.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.9.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=().A.-2 B.2 C.-4 D.410.下列说法正确的是()A.等弧所对的圆心角相等B.三角形的外心到这个三角形的三边距离相等C.经过三点可以作一个圆D.相等的圆心角所对的弧相等二、填空题(每小题3分,共24分)11.已知圆锥的侧面积为16πcm2,圆锥的母线长8cm,则其底面半径为_____cm.12.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为_____.13.近日,某市推出名师公益大课堂.据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.如果第二批,第三批公益课受益学生人次的增长率相同,则这个增长率是______.14.一张矩形的纸片ABCD中,AB=10,AD=8.按如图方式折,使A点刚好落在CD上。则折痕(阴影部分)面积为_________________.15.如图,在△ABC中,∠B=45°,AB=4,BC=6,则△ABC的面积是__________.16.已知x1,x2是关于x的方程x2﹣kx+3=0的两根,且满足x1+x2﹣x1x2=4,则k的值为_____.17.如图,中,,以点为圆心的圆与相切,则的半径为________.18.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.三、解答题(共66分)19.(10分)受非洲猪瘟的影响,2019年的猪肉价格创历史新高,同时其他肉类的价格也有一定程度的上涨,某超市11月份的猪肉销量是羊肉销量的倍,且猪肉价格为每千克元羊肉价格为每千克元.(1)若该超市11月份猪肉、羊肉的总销售额不低于万元,则11月份的猪肉销量至少多少千克?(2)12月份香肠腊肉等传统美食的制作,使得市场的猪肉需求加大,12月份猪肉的销量比11月份增长了,由于国家对猪肉价格的调控,12月份的猪肉价格比11月份降低了,羊肉的销量是11月份猪肉销量的,且价格不变.最终,该超市12月份猪肉和.羊肉的销售额比11月份这两种肉的销售额增加了,求的值.20.(6分)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.21.(6分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若为奇数,则甲获胜;若为偶数,则乙获胜.请你运用所学的概率的相关知识通过计算说明这个游戏对甲、乙双方是否公平.22.(8分)综合与实践—探究正方形旋转中的数学问题问题情境:已知正方形中,点在边上,且.将正方形绕点顺时针旋转得到正方形(点,,,分别是点,,,的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点落在正方形的对角线上时,设线段与交于点.求证:四边形是矩形;(2)“善学”小组提出问题:如图2,当线段经过点时,猜想线段与满足的数量关系,并说明理由;深入探究:(3)请从下面,两题中任选一题作答.我选择题.A.在图2中连接和,请直接写出的值.B.“好问”小组提出问题:如图3,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请在图3中补全图形,并直接写出的值.23.(8分)在平面直角坐标系中,已知抛物线y1=x2﹣4x+4的顶点为A,直线y2=kx﹣2k(k≠0),(1)试说明直线是否经过抛物线顶点A;(2)若直线y2交抛物线于点B,且△OAB面积为1时,求B点坐标;(1)过x轴上的一点M(t,0)(0≤t≤2),作x轴的垂线,分别交y1,y2的图象于点P,Q,判断下列说法是否正确,并说明理由:①当k>0时,存在实数t(0≤t≤2)使得PQ=1.②当﹣2<k<﹣0.5时,不存在满足条件的t(0≤t≤2)使得PQ=1.24.(8分)已知关于的一元二次方程.(1)请判断是否可为此方程的根,说明理由.(2)是否存在实数,使得成立?若存在,请求出的值;若不存在,请说明理由.25.(10分)我市某校准备成立四个活动小组:.声乐,.体育,.舞蹈,.书画,为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的值是;(2)请补全条形统计图;(3)喜爱“书画”的学生中有两名男生和两名女生表现特别优秀,现从这4人中随机选取两人参加比赛,请用列表或画树状图的方法求出所选的两人恰好是一名男生和一名女生的概率.26.(10分)如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用圆内接四边形对角互补的性质求解.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠A=180°﹣70°=110°.故选B.【点睛】本题考查圆内接四边形的性质,掌握圆内接四边形对角互补是解题关键.2、D【解析】利用△=b2-4ac≥1,且二次项系数不等于1求出k的取值范围.【详解】∵二次函数与y=kx2-8x+8的图象与x轴有交点,∴△=b2-4ac=64-32k≥1,k≠1,解得:k≤2且k≠1.故选D.【点睛】此题主要考查了抛物线与x轴的交点,熟练掌握一元二次方程根的判别式与根的关系是解题关键.3、B【分析】根据相似三角形的周长比等于相似比可得两个三角形的相似比,根据相似三角形的面积比等于相似比的平方可求出△ABC的面积,进而可求出AB边上的高.【详解】∵,周长是的周长的,∴与的相似比为,∴,∵S△A′B′C′=,∴S△ABC=24,∵AB=8,∴AB边上的高==6,故选:B.【点睛】本题考查相似三角形的性质,相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方;熟练掌握相关性质是解题关键.4、D【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;

B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;

C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.

D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;

故选D.5、C【分析】(1)根据翻折可得AD=AF=AB=3,进而可以证明△ABG≌△AFG,再设CG=x,利用勾股定理可求得x的值,即可证明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,进而可得∠EAG=45°;(3)过点F作FH⊥CE于点H,可得FH∥CG,通过对应边成比例可求得FH的长,进而可求得S△EFC=;(4)根据(1)求得的x的长与EF不相等,进而可以判断CF≠GE.【详解】解:如图所示:(1)∵四边形ABCD为正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折叠可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,则CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设CG=x,则BG=FG=3﹣x,∴EG=4﹣x,EC=2,根据勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4,解得x=,则3﹣x=,∴CG=FG,所以(1)正确;(2)由(1)中Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°,所以(2)正确;(3)过点F作FH⊥CE于点H,∴FH∥BC,∴,即1:(+1)=FH:(),∴FH=,∴S△EFC=×2×=,所以(3)正确;(4)∵GF=,EF=1,点F不是EG的中点,CF≠GE,所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【点睛】此题考查正方形的性质,翻折的性质,全等三角形的判定及性质,勾股定理求线段长度,平行线分线段成比例,正确掌握各知识点并运用解题是关键.6、D【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.7、C【分析】连接AB,分别利用勾股定理求出△AOB的各边边长,再利用勾股定理逆定理求得△ABO是直角三角形,再求tan∠AOB的值即可.【详解】解:连接AB如图,利用勾股定理得,,∵,,∴∴利用勾股定理逆定理得,△AOB是直角三角形∴tan∠AOB==故选C【点睛】本题考查了在正方形网格中,勾股定理及勾股定理逆定理的应用.8、D【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.9、D【分析】由反比例函数的图象过第一象限可得出,,再由反比例函数系数的几何意义即可得出,,根据的面积为再结合三角形之间的关系即可得出结论.【详解】∵反比例函数及的图象均在第一象限内,

∴,,

∵⊥轴,

∴,,

∴,

解得:.

故选:D.【点睛】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是反比例函数系数k的几何意义得出.10、A【解析】试题分析:A.等弧所对的圆心角相等,所以A选项正确;B.三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C.经过不共线的三点可以作一个圆,所以C选项错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选C.考点:1.确定圆的条件;2.圆心角、弧、弦的关系;3.三角形的外接圆与外心.二、填空题(每小题3分,共24分)11、1【解析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×1π×r×8=16π,解得r=1,然后解关于r的方程即可.【详解】解:设圆锥的底面圆的半径为r,根据题意得×1π×r×8=16π,解得r=1,所以圆锥的底面圆的半径为1cm.故答案为1.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12、30°【分析】由旋转的性质可得BC=CD,∠BCD=∠ACE,可得∠B=∠BDC=50°,由三角形内角和定理可求∠BCD=80°=∠ACE,由外角性质可求解.【详解】解:∵将△ABC绕点C顺时针旋转,∴BC=CD,∠BCD=∠ACE,∴∠B=∠BDC=50°,∴∠BCD=80°=∠ACE,∵∠ACE=∠B+∠A,∴∠A=80°﹣50°=30°,故答案为:30°.【点睛】本题考查了旋转的性质,三角形内角和与三角形外角和性质,解决本题的关键是正确理解题意,熟练掌握旋转的性质,能够由旋转的到相等的角.13、【分析】设增长率为x,根据“第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次”可列方程求解.【详解】设增长率为x,根据题意,得2(1+x)2=2.42,解得x1=-2.1(舍去),x2=0.1=10%.∴增长率为10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用-增长率问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.14、25【分析】根据折叠利用方程求出AE的长即可【详解】设,则∵折叠∴∴∴∴DF=4∴解得∴故答案为25【点睛】本题考查了折叠与勾股定理,利用折叠再结合勾股定理计算是解题关键。15、6【分析】作辅助线AD⊥BC构造直角三角形ABD,利用锐角∠B的正弦函数的定义求出三角形ABC底边BC上的高AD的长度,然后根据三角形的面积公式来求△ABC的面积即可.【详解】过A作AD垂直BC于D,在Rt△ABD中,∵sinB=,∴AD=AB•sinB=4•sin45°=4×=,∴S△ABC=BC•AD=×6×=,故答案为:【点睛】本题考查了解直角三角形.解答该题时,通过作辅助线△ABC底边BC上的高线AD构造直角三角形,利用锐角三角函数的定义在直角三角形中求得AD的长度的.16、2【分析】根据两根关系列出等式,再代入第二个代数式计算即可.【详解】∵x1、x2是方程x2﹣kx+1=0的两个根,∴x1+x2=k,x1x2=1.∵x1+x2﹣x1x2=k﹣1=4,∴k=2.故答案为:2.【点睛】本题考查一元二次方程的两根关系,关键在于熟练掌握基础知识,代入计算.17、【解析】试题解析:在△ABC中,∵AB=5,BC=3,AC=4,如图:设切点为D,连接CD,∵AB是C的切线,∴CD⊥AB,∴AC⋅BC=AB⋅CD,即∴的半径为故答案为:点睛:如果三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.18、1:4【解析】由S△BDE:S△CDE=1:3,得到

,于是得到

.【详解】解:两个三角形同高,底边之比等于面积比.故答案为【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.三、解答题(共66分)19、(1)11月份猪肉销量至少为千克;(2)的值为【分析】(1)根据“总销售额不低于27.2万元”建立一元一次不等式,解不等式即可;(2)根据“12月份猪肉和羊肉的销售额比11月份这两种肉的销售额增加了”建立方程,解方程求解即可.【详解】解:(1)设11月份猪肉销量为千克,则:,解得:,答:11月份猪肉销量至少为千克;(2)设11月份羊肉销量为千克,猪肉销量为千克,则:,令,则,整理得:,解得:或,(舍)或,答:a的值为.【点睛】本题考查一元一次不等式及一元二次方程的实际应用,明确题意,正确找出数量关系是解题的关键.20、(1);(2)10元;(3)x为12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;(3)根据题意得到,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,,故y与x的函数关系式为;(2)根据题意得,,解得:,(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,,,∴当时,w随x的增大而增大,当时,,答:当x为12时,日销售利润最大,最大利润960元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.21、公平,见解析【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【详解】画树状图如图所示,

由图知共有16种等可能结果,其中为奇数的可能有8种,为偶数也有8种可能,故结果为奇数或偶数的概率都是,甲乙获胜的概率相同,故游戏公平.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)见解析;(2);(3)A.,B..【分析】(1)根据旋转性质证得,从而证得绪论;(2)连接、,过点作,根据旋转性质结合三角形三线合一的性质证得,再证得四边形是矩形,从而求得结论;(3)A.设,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应边成比例再结合勾股定理即可求得答案;B.作交直线于点,根据旋转性质利用AAS证得,证得OP是线段的中垂线,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应高的比等于相似比再结合勾股定理即可求得答案;【详解】(1)由题意得:,,由旋转性质得:,∵四边形是矩形(2)连接、,过点作于N,由旋转得:,∵,,∵ON⊥D,∠=∠,∴四边形是矩形,∴,∴;(3)A.如图,连接,,,由旋转的性质得:∠BO=∠,BO=O,,∴,∴,,,设,则,B.如图,过点作AG∥交直线于点G,过点O作交直线于点,连接OP,∵AG∥,,四边形是正方形,由旋转可知:,,,,,,,,,,,,在和中,,,又∵,,,,,,,又∵,,,,,设,则,,在中,由勾股定理可得:,.【点睛】本题考查四边形综合题、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、、勾股定理、矩形的性质、线段的垂直平分线的性质和判定等知识,解题的关键是准确寻找全等三角形解决问题.23、(1)直线经过A点;(2)B(1,1)或B(1,1);(1)①正确,②正确.【解析】(1)将抛物线解析式整理成顶点式形式,然后写出顶点A的坐标,将点A的坐标代入直线的解析式判断即可;(2)OA=2,△OAB面积为1时,根据三角形的面积公式,求出点B的纵坐标,代入抛物线的解析式即可求出点B的横坐标,即可求解.

(1)①点M(t,0),则点P(t,t2﹣4t+4),点Q(t,kt﹣2k),若k>0:当0≤t≤2时,P在Q点上方时,t2-4t+4-kt-2k=3,整理得t2﹣(4+k)t+(1+2k)=0,求出△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,②分当P在Q点下方,当P在Q点上方时,两种情况进行分类讨论.【详解】(1)y1顶点A(2,0)当x=2时,由2k-2k=0,∴直线经过A点.(2)OA=2,△OAB面积为1时,S△OAByB令y解得:x1即点B的坐标为:B(1,1)或B(1,1),(1)∵点M(t,0),∴点P(t,t2﹣4t+4),点Q(t,kt﹣2k),①若k>0:当0≤t≤2时,P在Q点上方时,∵PQ=1∴t2﹣(4+k)t+(4+2k)=1整理得t2﹣(4+k)t+(1+2k)=0∵△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,此方程有解∴①正确.②若k<0:1)当P在Q点下方,∴t2﹣(4+k)t+(4+2k)=﹣1∴t2﹣(4+k)t+7+2k=0∵△=b2﹣4ac=(4+k)2﹣4(7+2k)=k2﹣12∴当存在PQ=1时,k2﹣12≥0∴k≤-23或k≥2∴当﹣2<k<﹣0.5时,不存在满足条件的t,2)当P在Q点上方时,∴t2﹣(4+k)t+(4+2k)=1∵△=k2+12>0,此方程有解又∵t1+t1∴正根>2∴在[0,2]上不存在满足条件的t,∴②正确-【点睛】属于二次函数综合题,考查二次函数图象上点的坐标特征

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论