版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A. B. C. D.2.平面直角坐标系内一点P(2,-3)关于原点对称点的坐标是()A.(3,-2)B.(2,3)C.(-2,3)D.(2,-3)3.二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为()A. B. C. D.4.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为()A.20米 B.30米 C.16米 D.15米5.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是()A.19.4 B.19.5 C.19.6 D.19.76.如图,四边形中,,,,设的长为,四边形的面积为,则与之间的函数关系式是()A. B. C. D.7.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.
B.
C.
D.18.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56° B.62° C.68° D.78°9.若点A(1,y1)、B(2,y2)都在反比例函数的图象上,则y1、y2的大小关系为A.y1<y2 B.y1≤y2 C.y1>y2 D.y1≥y210.二次函数y=﹣x2+2x﹣4,当﹣1<x<2时,y的取值范围是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣3二、填空题(每小题3分,共24分)11.如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.12.若圆中一条弦长等于半径,则这条弦所对的圆周角的度数为______.13.如图,在平面直角坐标系中,,P是经过O,A,B三点的圆上的一个动点(P与O,B两点不重合),则__________°,__________°.14.如图,矩形的面积为,它的对角线与双曲线相交于点,且,则________.15.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为_____.16.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),若圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是_____cm.17.如图,在中,,以点A为圆心,2为半径的与BC相切于点D,交AB于点E,交AC于点F,点P是上的一点,且,则图中阴影部分的面积为______.18.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为_________m.三、解答题(共66分)19.(10分)已知关于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有实数根,求m的取值范围.(2)若方程的两实数根为x1、x2,且x12+x22=5,求m的值.20.(6分)用适当的方法解方程:(1)x2+2x=0(2)x2﹣4x+1=021.(6分)如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.(1)求证:△ABC∽△BDC.(2)若AC=8,BC=6,求△BDC的面积.22.(8分)如图,某市郊外景区内一条笔直的公路经过、两个景点,景区管委会又开发了风景优美的景点.经测量,位于的北偏东的方向上,的北偏东的方向上,且.(1)求景点与的距离.(2)求景点与的距离.(结果保留根号)23.(8分)如图所示,已知为⊙的直径,是弦,且于点,连接AC、OC、BC.(1)求证:;(2)若,,求⊙的直径.24.(8分)如图1,抛物线y=﹣x2+bx+c的对称轴为直线x=﹣,与x轴交于点A和点B(1,0),与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.(1)求抛物线的解析式;(2)点P是直线BE上方抛物线上一动点,连接PD、PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以A、M、N、K为顶点的四边形是正方形时,请求出点N的坐标.25.(10分)综合与实践在数学活动课上,老师出示了这样一个问题:如图1,在中,,,,点为边上的任意一点.将沿过点的直线折叠,使点落在斜边上的点处.问是否存在是直角三角形?若不存在,请说明理由;若存在,求出此时的长度.探究展示:勤奋小组很快找到了点、的位置.如图2,作的角平分线交于点,此时沿所在的直线折叠,点恰好在上,且,所以是直角三角形.问题解决:(1)按勤奋小组的这种折叠方式,的长度为.(2)创新小组看完勤奋小组的折叠方法后,发现还有另一种折叠方法,请在图3中画出来.(3)在(2)的条件下,求出的长.26.(10分)解方程(1)7x2-49x=0;(2)x2-2x-1=0.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:,即抛物线的顶点坐标为,把点向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为,所以平移后得到的抛物线解析式为.故选D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2、C【解析】略3、D【分析】先根据一次函数的图象判断a、c的符号,再判断二次函数图象与实际是否相符,判断正误.【详解】解:A、由一次函数y=ax+c的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;
B、由一次函数y=ax+c的图象可得:a>0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向上,交于y轴的正半轴,错误;
C、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误.
D、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,与一次函数的图象交于同一点,正确;
故选:D.【点睛】本题考查二次函数的图象,一次函数的图象,解题的关键是熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.4、B【分析】设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解.【详解】设此时高为18米的旗杆的影长为xm,根据题意得:=,解得:x=30,∴此时高为18米的旗杆的影长为30m.故选:B.【点睛】本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键.5、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可.【详解】解:由于两把直尺在刻度10处是对齐的,观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键.6、C【分析】四边形ABCD图形不规则,根据已知条件,将△ABC绕A点逆时针旋转90°到△ADE的位置,求四边形ABCD的面积问题转化为求梯形ACDE的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE,下底AC,高DF分别用含x的式子表示,可表示四边形ABCD的面积.【详解】作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF1+DF1=CD1,即(3a)1+(4a)1=x1,解得:a=,∴y=S四边形ABCD=S梯形ACDE=×(DE+AC)×DF=×(a+4a)×4a=10a1=x1.故选C.【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.7、C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C.【点睛】本题考查概率公式.8、C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.9、C【解析】根据反比例函数图象的增减性进行判断:根据反比例函数的性质:当时,图象分别位于第一、三象限,在每个象限内,y随x的增大而减小;当时,图象分别位于第二、四象限,在每个象限内,y随x的增大而增大.∵反比例函数的解析式中的,∴点A(1,y1)、B(1,y1)都位于第四象限.又∵1<1,∴y1>y1.故选C.10、B【分析】先求出二次函数的对称轴,再根据二次函数的增减性求出最小值和最大值即可.【详解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函数的对称轴为直线x=1,∴﹣1<x<2时,x=1取得最大值为﹣1,x=﹣1时取得最小值为﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范围是﹣7<y≤﹣1.故选:B.【点睛】本题考查了二次函数与不等式,主要利用了二次函数的增减性和对称性,确定出对称轴从而判断出取得最大值和最小值的情况是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】由旋转的性质可得AC=AC1=3,∠CAC1=60°,由勾股定理可求解.【详解】∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===1,故答案为:1.【点睛】本题考查了旋转的性质,勾股定理,熟练旋转的性质是本题的关键.12、30°或150°【解析】与半径相等的弦与两条半径可构成等边三角形,所以这条弦所对的圆心角为60°,而弦所对的圆周角两个,根据圆内接四边形对角互补可知,这两个圆周角互补,其中一个圆周角的度数为12×60故答案为30°或150°.13、4545或135【分析】易证△OAB是等腰直角三角形,据此即可求得∠OAB的度数,然后分当P在弦OB所对的优弧上和在弦OB所对的劣弧上,两种情况进行讨论,利用圆周角定理求解.【详解】解:∵O(0,0)、A(0,2)、B(2,0),
∴OA=2,OB=2,
∴△OAB是等腰直角三角形.
∴∠OAB=45°,
当P在弦OB所对的优弧上时,∠OPB=∠OAB=45°,
当P在弦OB所对的劣弧上时,∠OPB=180°-∠OAB=135°.
故答案是:45°,45°或135°.【点睛】本题考查了圆周角定理,正确理解应分两种情况进行讨论是关键.14、12【解析】试题分析:由题意,设点D的坐标为(x,y),则点B的坐标为(,),所以矩形OABC的面积,解得∵图象在第一象限,∴.考点:反比例系数k的几何意义点评:反比例系数k的几何意义是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.15、60°【解析】分析:作半径OC⊥AB于D,连结OA、OB,如图,根据折叠的性质得OD=CD,则OD=OA,根据含30度的直角三角形三边的关系得到∠OAD=30°,接着根据三角形内角和定理可计算出∠AOB=120°,然后根据圆周角定理计算∠APB的度数.详解:如图作半径OC⊥AB于D,连结OA、OB.∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°.∵OA=OB,∴∠ABO=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故答案为60°.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了含30度的直角三角形三边的关系和折叠的性质,求得∠OAD=30°是解题的关键.16、1【解析】利用底面周长=展开图的弧长可得.【详解】解:设这个扇形铁皮的半径为rcm,由题意得=π×80,解得r=1.故这个扇形铁皮的半径为1cm,故答案为1.【点睛】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.17、【分析】图中阴影部分的面积=S△ABC-S扇形AEF.由圆周角定理推知∠BAC=90°.【详解】解:连接AD,在⊙A中,因为∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S阴影=4-故答案为:【点睛】本题考查了切线的性质与扇形面积的计算.求阴影部分的面积时,采用了“分割法”.18、【详解】如图:Rt△ABC中,∠C=90°,i=tanA=1:3,AB=1.设BC=x,则AC=3x,根据勾股定理,得:,解得:x=(负值舍去).故此时钢球距地面的高度是米.三、解答题(共66分)19、(1)m≥;(2)m=3【分析】(1)根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【详解】解:(1)当m﹣2≠0时,△=1+8(m﹣2)≥0,∴m≥且m≠2,当m﹣2=0时,x﹣2=0,符合题意,综上所述,m≥(2)由根与系数的关系可知:x1+x2=,x1x2=,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴+=5,∴=1或=﹣5,∴m=3或m=(舍去).【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20、(1)x1=0,x2=﹣2;(2)x1=2,x2=2.【分析】根据方程的特点可适当选择解方程的方法,利用因式分解法、配方法解一元二次方程即可得到答案.【详解】(1)或所以,(2),即所以,【点睛】本题考查了解元二次方程的方法,能够根据题目的结构特点选择合适的方法解一元二次方程,熟悉直接开平方法、配方法、公式法以及因式分解法的具体步骤是解题的关键.21、(1)详见解析;(2)【分析】(1)由AB是⊙O的直径,可得∠ACB=∠BCD=90°,又由BD是⊙O的切线,根据同角的余角相等,可得∠A=∠CBD,利用有两角对应相等的三角形相似,即可证得△ABC∽△BDC;(2)由AC=8,BC=6,可求得△ABC的面积,又由△ABC∽△BDC,根据相似三角形的面积比等于相似比的平方,即可求得△BDC的面积.【详解】(1)∵BD是⊙O的切线,∴AB⊥BD,∴∠ABD=90°.∴∠A+∠D=90°.∵AB是⊙O的直径,∴∠ACB=∠BCD=90°,∴∠CBD+∠D=90°,∴∠A=∠CBD,∴△ABC∽△BDC;(2)∵△ABC∽△BDC,∴,∵AC=8,BC=6,∴S△ABCAC•BC8×6=24,∴S△BDC=S△ABC24÷()2.【点睛】本题考查了相似三角形的判定与性质、圆周角定理、切线的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.22、(1)BC=10km;(2)AC=10km.【分析】(1)由题意可求得∠C=30°,进一步根据等角对等边即可求得结果;(2)分别在和中利用锐角三角函数的知识解直角三角形即可求得结果.【详解】解:(1)过点作直线,垂足为,如图所示.根据题意,得:,,∴∠C=∠CBD-∠CAD=30°,∴∠CAD=∠C,∴BC=AB=.(2)在中,,∴,在中,,∴.【点睛】本题考查了解直角三角形的应用,属于基本题型,熟练掌握锐角三角函数的知识是解题的关键.23、(1)证明见解析;(2)10【分析】(1)先利用得到,再利用直角三角形的两锐角互余即可求解;(2)利用垂径定理得到CE=DE=,再得到,,在中,利用得到求出BE,即可得到求解..【详解】(1)证明:∵∴又∵为直径,∴,又∵∴,∴∴(2)∵,为直径∴,∴又∵,∴,∴,∴,∴在中,即,解得,∴.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.24、(1)y=﹣x2+﹣x+2;(2);(3)N点的坐标为:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根据对称轴公式列出等式,带点到抛物线列出等式,解出即可;(2)先求出A、B、C的坐标,从而求出D的坐标算出BD的解析式,根据题意画出图形,设出P、G的坐标代入三角形的面积公式得出一元二次方程,联立方程组解出即可;(3)分类讨论①当AM是正方形的边时,(ⅰ)当点M在y轴左侧时(N在下方),(ⅱ)当点M在y轴右侧时,②当AM是正方形的对角线时,分别求出结果综合即可.【详解】(1)抛物线y=﹣x2+bx+c的对称轴为直线x=﹣,与x轴交于点B(1,0).∴,解得,∴抛物线的解析式为:y=﹣x2+﹣x+2;(2)抛物线y=﹣x2﹣x+2与x轴交于点A和点B,与y轴交于点C,∴A(﹣1,0),B(1,0),C(0,2).∵点D为线段AC的中点,∴D(﹣2,1),∴直线BD的解析式为:,过点P作y轴的平行线交直线EF于点G,如图1,设点P(x,),则点G(x,).∴,当x=﹣时,S最大,即点P(﹣,),过点E作x轴的平行线交PG于点H,则tan∠EBA=tan∠HEG=,∴,故为最小值,即点G为所求.联立解得,(舍去),故点E(﹣,),则PG﹣的最小值为PH=.(3)①当AM是正方形的边时,(ⅰ)当点M在y轴左侧时(N在下方),如图2,当点M在第二象限时,过点A作y轴的平行线GH,过点M作MG⊥GH于点G,过点N作HN⊥GH于点H,∴∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠GMA=∠HAN,∵∠AGM=∠NHA=90°,AM=AN,∴△AGM≌△NHA(AAS),∴GA=NH=1﹣,AH=GM,即y=﹣,解得x=,当x=时,GM=x﹣(﹣1)=,yN=﹣AH=﹣GM=,∴N(,).当x=时,同理可得N(,),当点M在第三象限时,同理可得N(,).(ⅱ)当点M在y轴右侧时,如图3,点M在第一象限时,过点M作MH⊥x轴于点H设AH=b,同理△AHM≌△MGN(AAS),则点M(﹣1+b,b﹣).将点M的坐标代入抛物线解析式可得:b=(负值舍去)yN=yM+GM=yM+AH=,∴N(﹣,).当点M在第四象限时,同理可得N(﹣,-).②当AM是正方形的对角线时,当点M在y轴左侧时,过点M作MG⊥对称轴于点G,设对称轴与x轴交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工个人总结怎么写2021
- 指导培养教师工作计划
- 2022年高中工作计划
- 2025年柔性自动化装备项目合作计划书
- 自行车车形容2篇
- 2025年耐高温滤料合作协议书
- 入职竞业协议书(2篇)
- 2025年高纯石英纤维正交三向织物项目发展计划
- 2025年青霉素类抗菌药物合作协议书
- 地下车库租赁协议
- 2024-2030年中国高密度聚乙烯管道行业发展展望与投资策略建议报告
- 2024-2030年中国醋酸乙烯行业运营状况与发展风险评估报告
- 2024年新能源汽车充电停车位租赁及维护服务合同3篇
- 《大学生就业与创业指导》课件-第9章 大学生创业指导
- 2024-2030年中国建设工程质量检测行业发展模式规划分析报告
- 企业文化塑造与员工激励方案
- 广东省广州越秀区2023-2024学年八年级上学期期末数学试卷(含答案)
- 2024年01月22504学前儿童科学教育活动指导期末试题答案
- 2024甘肃省建筑安全员-A证考试题库及答案
- 2023-2024学年贵州省遵义市新蒲新区八年级(上)期末数学试卷(含答案)
- 华中农业大学《操作系统实验》2021-2022学年第一学期期末试卷
评论
0/150
提交评论