版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.由的图像经过平移得到函数的图像说法正确的是()A.先向左平移6个单位长度,然后向上平移7个单位长度B.先向左平移6个单位长度,然后向下平移7个单位长度C.先向右平移6个单位长度,然后向上平移7个单位长度D.先向右平移6个单位长度,然后向下平移7个单位长度2.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是()A.60° B.65° C.75° D.80°3.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知相似.()A. B. C. D.4.如图,在中,,,点是边上的一个动点,以为直径的圆交于点,若线段长度的最小值是4,则的面积为()A.32 B.36 C.40 D.485.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A. B. C. D.6.二次函数y=3(x+4)2﹣5的图象的顶点坐标为()A.(4,5) B.(﹣4,5) C.(4,﹣5) D.(﹣4,﹣5)7.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS8.某公司2017年的营业额是万元,2019年的营业额为万元,设该公司年营业额的平均增长率为,根据题意可列方程为()A. B.C. D.9.二次函数y=kx2+2x+1的部分图象如图所示,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.0<k<110.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则11.用配方法解方程时,原方程应变形为()A. B. C. D.12.下列事件中是必然发生的事件是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.射击运动员射击一次,命中十环C.在地球上,抛出的篮球会下落D.明天会下雨二、填空题(每题4分,共24分)13.将二次函数化成的形式为__________.14.如图,反比例函数的图像过点,过点作轴于点,直线垂直线段于点,点关于直线的对称点恰好在反比例函数的图象上,则的值是__________.15.已知实数a、b、c在数轴上的位置如图所示,化简=_____.16.若分别是方程的两实根,则的值是__________.17.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n的值为_____.18.___________.三、解答题(共78分)19.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.20.(8分)如图,在平面直角坐标系中,双曲线l:y=(x>0)过点A(a,b),B(2,1)(0<a<2);过点A作AC⊥x轴,垂足为C.(1)求l的解析式;(2)当△ABC的面积为2时,求点A的坐标;(3)点P为l上一段曲线AB(包括A,B两点)的动点,直线l1:y=mx+1过点P;在(2)的条件下,若y=mx+1具有y随x增大而增大的特点,请直接写出m的取值范围.(不必说明理由)21.(8分)如图,在中,为边的中点,为线段上一点,联结并延长交边于点,过点作的平分线,交射线于点.设.(1)当时,求的值;(2)设,求关于的函数解析式,并写出的取值范围;(3)当时,求的值.22.(10分)如图,在等腰中,,以为直径的,分别与和相交于点和,连接.(1)求证:;(2)求证:.23.(10分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率.24.(10分)某日,深圳高级中学(集团)南北校区初三学生参加东校区下午时的交流活动,南校区学生中午乘坐校车出发,沿正北方向行12公里到达北校区,然后南北校区一同前往东校区(等待时间不计).如图所示,已知东校区在南校区北偏东方向,在北校区北偏东方向.校车行驶状态的平均速度为,途中一共经过30个红绿灯,平均每个红绿灯等待时间为30秒.(1)求北校区到东校区的距离;(2)通过计算,说明南北校区学生能否在前到达东校区.(本题参考数据:,)25.(12分)已知为实数,关于的方程有两个实数根.(1)求实数的取值范围.(2)若,试求的值.26.《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.(规律探索)(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2=____;同种操作,如图3,S阴影3=1--()2-()3=__________;如图4,S阴影4=1--()2-()3-()4=___________;……若同种地操作n次,则S阴影n=1--()2-()3-…-()n=_________.于是归纳得到:+()2+()3+…+()n=_________.(理论推导)(2)阅读材料:求1+2+22+23+24+…+22015+22016的值.解:设S=1+2+22+23+24+…+22015+22016,①将①×2得:2S=2+22+23+24+…+22016+22017,②由②-①得:2S—S=22017—1,即=22017-1.即1+2+22+23+24+…+22015+22016=22017-1根据上述材料,试求出+()2+()3+…+()n的表达式,写出推导过程.(规律应用)(3)比较+++……__________1(填“”、“”或“=”)
参考答案一、选择题(每题4分,共48分)1、C【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,上加下减确定平移方向即可得解.【详解】解:抛物线y=2x2的顶点坐标为(0,0),
抛物线y=2(x-6)2+1的顶点坐标为(6,1),所以,先向右平移6个单位,再向上平移1个单位可以由抛物线y=2x2平移得到抛物线y=2(x-6)2+1.
故选:C.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.2、D【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC据三角形的外角性质即可求出∠ODC数,进而求出∠CDE的度数.【详解】∵,∴,,设,∴,∴,∵,∴,即,解得:,.故答案为D.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.3、A【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:已知给出的三角形的各边分别为1、、,只有选项A的各边为、2、与它的各边对应成比例.故选:A.【点睛】本题考查三角形相似判定定理以及勾股定理,是基础知识要熟练掌握.4、D【分析】连接BQ,证得点Q在以BC为直径的⊙O上,当点O、Q、A共线时,AQ最小,在中,利用勾股定理构建方程求得⊙O的半径R,即可解决问题.【详解】如图,连接BQ,∵PB是直径,∴∠BQP=90°,
∴∠BQC=90°,
∴点Q在以BC为直径的⊙O上,∴当点O、Q、A共线时,AQ最小,设⊙O的半径为R,在中,,,,∵,即,解得:,故选:D【点睛】本题考查了圆周角定理,勾股定理,三角形面积公式.解决本题的关键是确定Q点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.5、D【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可.【详解】解:两次摸球的所有的可能性树状图如下:第一次第二次开始∴两次都是红球.故选D.【点睛】考查用树状图或列表法,求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.6、D【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D.【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式的顶点坐标为(h,k).7、D【分析】根据利用科学计算器由三角函数值求角度的使用方法,容易进行选择.【详解】若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.【点睛】本题考查科学计算器的使用方法,属基础题.8、A【分析】根据题意2017年的营业额是100万元,设该公司年营业额的平均增长率为,则2018年的营业额是100(1+x)万元,2019年的营业额是100(1+x)²万元,然后根据2019年的营业额列方程即可.【详解】解:设年平均增长率为,则2018的产值为:,2019的产值为:.那么可得方程:.故选:.【点睛】本题考查的是一元二次方程的增长率问题的应用.9、D【分析】由二次函数y=kx2+2x+1的部分图象可知开口朝上以及顶点在x轴下方进行分析.【详解】解:由图象可知开口朝上即有0<k,又因为顶点在x轴下方,所以顶点纵坐标从而解得k<1,所以k的取值范围是0<k<1.故选D.【点睛】本题考查二次函数图像性质,根据开口朝上以及顶点在x轴下方分别代入进行分析.10、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.11、A【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2−2x=5,配方得:x2−2x+1=1,即(x−1)2=1.故选:A.【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.12、C【解析】试题分析:A.抛两枚均匀的硬币,硬币落地后,都是正面朝上是随机事件,故A错误;B.射击运动员射击一次,命中十环是随机事件,故B错误;C.在地球上,抛出的篮球会下落是必然事件,故C正确;D.明天会下雨是随机事件,故D错误;故选C.考点:随机事件.二、填空题(每题4分,共24分)13、【分析】利用配方法整理即可得解.【详解】解:,所以.故答案为.【点睛】本题考查了二次函数的解析式有三种形式:(1)一般式:为常数);(2)顶点式:;(3)交点式(与轴):.14、【分析】设直线l与y轴交于点M,点关于直线的对称点,连接MB′,根据一次函数解析式确定∠PMO=45°及M点坐标,然后根据A点坐标分析B点坐标,MB的长度,利用对称性分析B′的坐标,利用待定系数法求反比例函数解析式,然后将B′坐标代入解析式,从而求解.【详解】解:直线l与y轴交于点M,点关于直线的对称点,连接MB′由直线中k=1可知直线l与x轴的夹角为45°,∴∠PMO=45°,M(0,b)由,过点作轴于点∴B(0,2),MB=b-2∴B′(2-b,b)把点代入中解得:k=-4∴∵恰好在反比例函数的图象上把B′(2-b,b)代入中解得:(负值舍去)∴故答案为:【点睛】本题考查了待定系数法求反比例函数、正比例函数的解析式,轴对称的性质,函数图象上点的坐标特征,用含b的代数式表示B′点坐标是解题的关键.15、﹣a+b【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】解:由图可知:a<b<0<c,而且,
∴a+c<0,b+c<0,
∴,
故答案为:.【点睛】本题考查了二次根式的性质与化简,绝对值的性质,根据数轴判断出a、b、c的情况是解题的关键.16、3【分析】根据一元二次方程根与系数的关系即可得答案.【详解】∵分别是方程的两实根,∴=3,故答案为:3【点睛】此题考查根与系数的关系,一元二次方程根与系数的关系:x1+x2=-,x1x2=;熟练掌握韦达定理是解题关键.17、1【分析】先根据点A,C的坐标,建立方程求出x1+x2=-2,代入二次函数解析式即可得出结论.【详解】∵A(x1,4)、C(x2,4)在二次函数y=2(x+1)2+3的图象上,∴2(x+1)2+3=4,∴2x2+4x+1=0,根据根与系数的关系得,x1+x2=-2,∵B(x1+x2,n)在二次函数y=2(x+1)2+3的图象上,∴n=2(-2+1)2+3=1,故答案为:1.【点睛】此题主要考查了二次函数图象上点的特点,根与系数的关系,求出x1+x2=-2是解本题的关键.18、【分析】直接代入特殊角的三角函数值进行计算即可.【详解】原式.故答数为:.【点睛】本题考查了特殊角的三角函数值及实数的运算,熟记特殊角的三角函数值是解题的关键.三、解答题(共78分)19、(1)见解析;(2)相切,理由见解析【分析】(1)连接OC,由D为的中点,得到,根据圆周角定理即可得到结论;
(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,从而得到结论.【详解】(1)证明:连接OC,∵D为的中点,∴,∴∠BOD=∠BOC,由圆周角定理可知,∠BAC=∠BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点睛】本题考查了直线与圆的位置关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.20、(1);(2);(1)0<m≤1【分析】(1)将B(2,1)代入求出k即可;(2)根据A(a,b)在反比例函数图象上,得到,根据三角形的面积列方程即可得到结论;(1)把(,1)代入y=mx+1得,m=1,再根据一次函数的性质即可得到结论.【详解】解:(1)将B(2,1)代入得:k=2,∴反比例函数l的解析式为;(2)∵A(a,b)在反比例函数的图象上,∴,即,∵S△ABC==2,即=2,解得:b=1,∴点A的坐标为;(1)∵直线l1:y=mx+1过点P,点P为l上一段曲线AB(包括A,B两点)的动点,∴当点P与A重合时,把(,1)代入y=mx+1得,m=1,∵y=mx+1具有y随x增大而增大的特点,∴m>0,∴m的取值范围为:0<m≤1.【点睛】本题考查了反比例函数与几何综合,待定系数法求函数的解析式,三角形的面积计算,一次函数的性质,熟练掌握数形结合思想的应用是解题的关键.21、(1);(2);(3)或2.【分析】(1)由平行四边形ABCD,得到AD与BC平行且相等,由两直线平行得到两对内错角相等,进而确定出三角形BEF与三角形AGF相似,由相似得比例,把x=1代入已知等式,结合比例式得到AG=BE,AD=AB,即可求出所求式子的值;(2)设AB=1,根据已知等式表示出AD与BE,由AD与BC平行,得到比例式,表示出AG与DG,利用两角相等的三角形相似得到三角形GDH与三角形ABE相似,利用相似三角形面积之比等于相似比的平方列出y与x的函数解析式,并求出x的范围即可;(3)分两种情况考虑:①当点H在边DC上时,如图1所示;②当H在DC的延长线上时,如图2所示,分别利用相似得比例列出关于x的方程,求出方程的解即可得到x的值.【详解】(1)在中,,,.,即,.,.为的中点,.,即.(2),不妨设.则,.,.,.,.,..在中,,....(3)①当点在边上时,,..,..解得.②当在的延长线上时,,..,..解得.综上所述,可知的值为或2.【点睛】此题属于相似型综合题,涉及的知识有:平行四边形的性质,相似三角形的判定与性质,以及平行线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22、(1)见解析;(2)见解析.【分析】(1)根据等腰三角形的性质可得,,从而得出,最后根据平行线的判定即可证出结论;(2)连接半径,根据等腰三角形的性质可得,再根据平行线的性质可得,,从而得出,最后根据在同圆中,相等的圆心角所对的弦也相等即可证出结论.【详解】证明:(1)∵,∴,∵,∴,∴,∴;(2)连接半径,∴,∴,由(1)知,∴,,∴,∴,∴.【点睛】此题考查的是圆的基本性质、等腰三角形的性质和平行线的判定及性质,掌握在同圆中,相等的圆心角所对的弦也相等、等边对等角和平行线的判定及性质是解决此题的关键.23、【详解】解:树状图为:
从树状图看出,所有可能出现的结果共有20个,其中合格的结果有14个,所以,P(这位考生合格)=答:这位考生合格的概率是.24、(1);(2)能.【分析】(1)过点作于点,然后在两个直角三角形中通过三角函数分别计算出AE、AC即可;(2)算出总路程求出汽车行驶的时间,加上等红绿灯的时间即为总时间,即可作出判断.【详解】解:(1)过点作于点.依题意有:,,,则,∵,∴,∴(2)总用时为:分钟分钟,∴能规定时间前到达.【点睛】本题考查了三角函数的应用,把非直角三角形的问题通过作辅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度教育机构抵押担保贷款合同3篇
- 2024年量子计算技术研发合同
- 2024年股权收购及转让协议
- 2024年鱼塘租赁与渔业生物饲料供应合同3篇
- 2024年源地信用学贷受理助你轻松上大学3篇
- 2024年铝合金门窗工程范本合同
- 2024年音乐喷泉机电安装工程分包合作协议3篇
- 2024年物业服务管理合同完整性保障协议
- 2024年项目奖金分配合同
- 2024年雇佣关系约定书:共创共赢新篇章
- 搭竹架合同范本
- Neo4j介绍及实现原理
- (2024年)(完整版)24式太极拳教案全集
- 采购管理实务(高职)全套教学课件
- 2024年教师招聘考试-小学科学教师招聘笔试历年真题荟萃含答案
- JJF 2092-2024射频与微波衰减器校准规范
- 穴位注射的机理与其在临床上的应用课件
- 学校校史编纂工作方案
- 农产品质量安全法解读
- 2024年石油石化技能考试-钻井工具装修工历年考试高频考点试题附带答案
- 人体器官有偿捐赠流程
评论
0/150
提交评论