2023届四川省绵阳市三台外国语学校九年级数学第一学期期末检测试题含解析_第1页
2023届四川省绵阳市三台外国语学校九年级数学第一学期期末检测试题含解析_第2页
2023届四川省绵阳市三台外国语学校九年级数学第一学期期末检测试题含解析_第3页
2023届四川省绵阳市三台外国语学校九年级数学第一学期期末检测试题含解析_第4页
2023届四川省绵阳市三台外国语学校九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点,分别交PA、PB于E、F,且PA=1.则△PEF的周长为()A.1 B.15 C.20 D.252.用配方法将二次函数化为的形式为()A. B.C. D.3.若反比例函数图象上有两个点,设,则不经过第()象限.A.一 B.二 C.三 D.四4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()A. B. C. D.5.已知反比例函数y=﹣,下列结论不正确的是()A.函数的图象经过点(﹣1,3) B.当x<0时,y随x的增大而增大C.当x>﹣1时,y>3 D.函数的图象分别位于第二、四象限6.两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()A. B. C. D.7.抛物线,下列说法正确的是()A.开口向下,顶点坐标 B.开口向上,顶点坐标C.开口向下,顶点坐标 D.开口向上,顶点坐标8.二次根式中x的取值范围是()A.x≥﹣2 B.x≥2 C.x≥0 D.x>﹣29.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.5B.6(1+2x)=8.5C.6(1+x)2=8.5D.6+6(1+x)+6(1+x)2=8.510.已知点(﹣3,a),(3,b),(5,c)均在反比例函数y=的图象上,则有()A.a>b>c B.c>b>a C.c>a>b D.b>c>a11.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为()A.1 B.2 C. D.12.若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是()A.﹣14 B.﹣17 C.﹣20 D.﹣23二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.14.计算:____________15.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是_____(填甲或乙)16.点(2,3)关于原点对称的点的坐标是_____.17.某校开展“节约每滴水”活动,为了了解开展活动一个月以来节约用水情况,从九年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况,如下表:节水量()0.20.250.30.4家庭数(个)4637请你估计这400名同学的家庭一个月节约用水的总量大约是_________.18.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.三、解答题(共78分)19.(8分)如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=3,BC=4时,求的值.20.(8分)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示):(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:)21.(8分)如图,中,顶点的坐标是,轴,交轴于点,顶点的纵坐标是,的面积是.反比例函数的图象经过点和,求反比例函数的表达式.22.(10分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________.23.(10分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)如果BC=,AC=3,求CD的长.24.(10分)某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.25.(12分)已知二次函数y=ax²+bx-4(a,b是常数.且a0)的图象过点(3,-1).(1)试判断点(2,2-2a)是否也在该函数的图象上,并说明理由.(2)若该二次函数的图象与x轴只有一个交点,求该函数表达式.(3)已知二次函数的图像过(,)和(,)两点,且当<时,始终都有>,求a的取值范围.26.小琴和小江参加学校举行的“经典诵读"比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母依次表示这三个诵读材料),将这三个字母分别写在张完全相同的不透明卡片的正面上,把这张卡片背面朝上洗匀后放在桌面上,比赛时小琴先从中随机抽取一张卡片,记录下卡精上的内容,放回后洗匀,再由小江从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.小琴诵读《论语》的概率是.请用列表法或画树状图(树形图)法求小琴和小江诵读两个不同材料的概率.

参考答案一、选择题(每题4分,共48分)1、C【分析】由切线长定理知,AE=CE,FB=CF,PA=PB=1,然后根据△PEF的周长公式即可求出其结果.【详解】解:∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,PA=PB=4,∴△PEF的周长=PE+EF+PF=PA+PB=2.故选:C.【点睛】本题主要考查了切线长定理的应用,解此题的关键是求出△PEF的周长=PA+PB.2、B【分析】加上一次项系数一半的平方凑成完全平方式,将一般式转化为顶点式即可.【详解】故选:B.【点睛】本题考查二次函数一般式到顶点式的转化,熟练掌握配方法是解题的关键.3、C【分析】利用反比例函数的性质判断出m的正负,再根据一次函数的性质即可判断.【详解】解:∵,∴a-1>0,∴图象在三象限,且y随x的增大而减小,∵图象上有两个点(x1,y1),(x2,y2),x1与y1同负,x2与y2同负,∴m=(x1-x2)(y1-y2)<0,∴y=mx-m的图象经过一,二、四象限,不经过三象限,故选:C.【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、A【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【详解】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的长为.故选A.【点睛】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.5、C【分析】根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.进行判断即可.【详解】A、反比例函数y=﹣的图象必经过点(﹣1,3),原说法正确,不合题意;B、k=﹣3<0,当x<0,y随x的增大而增大,原说法正确,不符合题意;C、当x>﹣1时,y>3或y<0,原说法错误,符合题意;D、k=﹣3<0,函数的图象分别位于第二、四象限,原说法正确,不符合题意;故选:C.【点睛】本题主要考查反比例函数的性质,掌握反比例函数的图象和性质,是解题的关键.6、A【解析】由题意得,两个相似多边形的一组对应边的比为3:4.5=,∴它们的相似比为,故选A.7、C【分析】直接根据顶点式即可得出顶点坐标,根据a的正负即可判断开口方向.【详解】∵,∴抛物线开口向下,由顶点式的表达式可知抛物线的顶点坐标为,∴抛物线开口向下,顶点坐标故选:C.【点睛】本题主要考查顶点式的抛物线的表达式,掌握a对开口方向的影响和顶点坐标的确定方法是解题的关键.8、A【解析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:x+2≥0,∴x≥﹣2,故选:A.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.9、C【解析】由题意可得9月份的快递总件数为6(1+x)万件,则10月份的快递总件数为6(1+x)(1+x)万件.【详解】解:由题意可得6(1+x)2=8.5,故选择C.【点睛】理解后一个月的快递数量是以前一个月的快递数量为基础的是解题关键.10、D【分析】根据反比例函数系数k2+1大于0,得出函数的图象位于第一、三象限内,在各个象限内y随x的增大而减小,据此进行解答.【详解】解:∵反比例函数系数k2+1大于0,∴函数的图象位于第一、三象限内,在各个象限内y随x的增大而减小,∵﹣3<0,0<3<5,∴点(﹣3,a)位于第三象限内,点(3,b),(5,c)位于第一象限内,∴b>c>a.故选:D.【点睛】本题主要考查反比例函数的图象和性质,解答本题的关键是确定反比例函数的系数大于0,并熟练掌握反比例函数的性质,此题难度一般.11、C【分析】连接OC,BC,过点O作OD⊥AC于D,可得OD//BC,利用平行线段成比例可知和AD=,利用勾股定理,可得,列出方程,即可求出OD的长.【详解】解:连接OC,BC,过点O作OD⊥AC于D,∴∠ADO=90°,∵AB为的直径,AB=4,,∴∠ACB=90°,OA=OC=,∴OD//BC,∴,∴AD=,在中,,∴,解得OD=;故选C.【点睛】本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键.12、A【解析】根据不等式组求出a的范围,然后再根据分式方程求出a的范围,从而确定a满足条件的所有整数值,求和即可.【详解】不等式组整理得:,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,分式方程去分母得:12﹣ax=2x+4,解得:x=,∵分式方程有整数解且a是整数∴a+2=±1、±2、±4、±8,即a=﹣1、﹣3、0、﹣4、2、﹣6、6、﹣10,又∵x=≠﹣2,∴a≠﹣6,由a<﹣3得:a=﹣10或﹣4,∴所有满足条件的a的和是﹣14,故选:A.【点睛】本题主要考查含参数的分式方程和一元一次不等式组的综合,熟练掌握分式方程和一元一次不等式组的解法,是解题的关键,特别注意,要检验分式方程的增根.二、填空题(每题4分,共24分)13、1【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.14、1【分析】根据分式混合运算的法则计算即可.【详解】解:原式====1,故答案为:1.【点睛】本题考查了分式混合运算,主要考查学生的计算能力,掌握分式混合运算的法则是解题的关键.15、甲【分析】

【详解】∵S甲2=16.7,S乙2=28.3,∴S甲2<S乙2,∴甲的成绩比较稳定,故答案为甲.16、(-2,-3).【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(−2,−3).故答案为(-2,-3).17、1【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:

(0.2×4+0.25×6+0.3×3+0.4×7)÷20=0.3(m3),

因此这400名同学的家庭一个月节约用水的总量大约是:

400×0.3=1(m3),

故答案为:1.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.18、6【解析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得,代入数据可得答案.【详解】如图,在中,米,米,易得,,即,米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)只要根据平行线的性质和角平分线的定义即可得到∠1=∠3,进而可得结论;(2)易证△AEF∽△CEB,于是AE:CE=AF:BC,然后结合(1)的结论即可求出AE:EC,进一步即得结果.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,∵BF平分∠ABC,∴∠1=∠2,∴∠1=∠3,∴AB=AF;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,∴△AEF∽△CEB,∴AE:CE=AF:BC,∵AF=AB=3,BC=4,∴AE:EC=3:4,∴.【点睛】本题考查了平行四边形的性质、等腰三角形的判定和相似三角形的判定和性质,属于常考题型,熟练掌握上述基本知识是解题关键.20、(1)90海里;(2)1.4小时.【分析】(1)过点M作MD⊥AB于点D,根据AM=180海里以及△AMD的三角函数求出MD的长度;(2)根据三角函数求出MB的长度,然后计算.【详解】解:(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴MD=AM•cos45°=90(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离是90海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=90海里,∴MB=60海里,∴60÷20≈1.4(小时),答:渔船从B到达小岛M的航行时间约为1.4小时.考点:三角函数的实际应用21、.【解析】根据题意得出AE=6,结合平行四边形的面积得出AD=BC=4,继而知点D坐标,从而得出反比例函数解析式;【详解】解:顶点的坐标是,顶点的纵坐标是,,又的面积是,,则,反比例函数解析式为.【点睛】本题主要考查待定系数法求反比例函数解析式,解题的关键是掌握平行四边形的面积公式及待定系数法求反比例函数的能力.22、20.3108【分析】(1)先求出样本总数,进而可得出m、n的值;(2)根据(1)中n的值可得出,“乒乓球”所在的扇形的圆心角的度数;(3)依据求简单事件的概率即可求出.【详解】解:(1)∵喜欢篮球的是60人,频率是0.25,∴样本数=60÷0.25=1.∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是72人,∴n=72÷1=0.30,m=0.20×1=2.故答案为2,0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案为108;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是10÷60=.故答案为(1)2,0.3(2)108(3).(3)【点睛】题考查的是扇形统计图,熟知通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数是解答此题的关键.23、(1)详见解析;(1)CD=1.【分析】(1)根据相似三角形的判定得出即可;(1)根据相似得出比例式,代入求出即可.【详解】证明:(1)∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC;(1)∵△BDC∽△ABC,∴,∴,∴CD=1.【点睛】考核知识点:相似

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论