2023届上海市奉贤区名校九年级数学第一学期期末考试试题含解析_第1页
2023届上海市奉贤区名校九年级数学第一学期期末考试试题含解析_第2页
2023届上海市奉贤区名校九年级数学第一学期期末考试试题含解析_第3页
2023届上海市奉贤区名校九年级数学第一学期期末考试试题含解析_第4页
2023届上海市奉贤区名校九年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.一元二次方程x2﹣4x+5=0的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根2.如图,A、B、C是⊙O上互不重合的三点,若∠CAO=∠CBO=20°,则∠AOB的度数为()A.50° B.60° C.70° D.80°3.如图,中,弦相交于点,连接,若,,则()A. B. C. D.4.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A. B.1.5cm C. D.1cm5.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A. B. C. D.6.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.57.从一组数据1,2,2,3中任意取走一个数,剩下三个数不变的是()A.平均数 B.众数 C.中位数 D.方差8.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有()A.②③ B.②③④ C.②③⑤ D.②③④⑤9.如图,平面直角坐标系中,,反比例函数的图象分别与线段交于点,连接.若点关于的对称点恰好在上,则()A. B. C. D.10.投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()A.p一定等于B.p一定不等于C.多投一次,p更接近D.投掷次数逐步增加,p稳定在附近11.如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是()A. B. C.2 D.12.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.14.小明练习射击,共射击次,其中有次击中靶子,由此可估计,小明射击一次击中靶子的概率约为__________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.16.一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,随机掷一次小正方体,朝上一面的数字是奇数的概率是__________.17.一张等腰三角形纸片,底边长为15,底边上的高为22.5,现沿底边依次从下往上裁剪宽度均为3的矩形纸条,如图,已知剪得的纸条中有一张是正方形(正方形),则这张正方形纸条是第________张.18.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG.则下列结论:①∠FCG=∠CDG;②△CEF的面积等于;③FC平分∠BFG;④BE2+DF2=EF2;其中正确的结论是_____.(填写所有正确结论的序号)三、解答题(共78分)19.(8分)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.20.(8分)如图,∠1=∠3,∠B=∠D,AB=DE=5,BC=1.(1)请证明△ABC∽△ADE.(2)求AD的长.21.(8分)如图,在平面直角坐标系中,直线与双曲线相交于A(﹣2,a)、B两点,BC⊥x轴,垂足为C.(1)求双曲线与直线AC的解析式;(2)求△ABC的面积.22.(10分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60°,底端D的仰角为30°,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为45°(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).23.(10分)(1)解方程:x2﹣4x﹣3=0(2)计算:24.(10分)电影《我和我的祖国》在国庆档热播,预售票房成功破两亿,堪称热度最高的爱国电影,周老师打算从非常渴望观影的5名学生会干部(两男三女)中,抽取两人分别赠送一张的嘉宾观影卷,问抽到一男一女的概率是多少?(请你用树状图或者列表法分析)25.(12分)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进30海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD的长(结果保留根号).26.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?

参考答案一、选择题(每题4分,共48分)1、A【解析】首先求出一元二次方程根的判别式,然后结合选项进行判断即可.【详解】解:∵一元二次方程,∴△=,即△<0,∴一元二次方程无实数根,故选A.【点睛】本题主要考查了根的判别式的知识,解题关键是要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、D【分析】连接CO并延长交⊙O于点D,根据等腰三角形的性质,得∠CAO=∠ACO,∠CBO=∠BCO,结合三角形外角的性质,即可求解.【详解】连接CO并延长交⊙O于点D,∵∠CAO=∠ACO,∠CBO=∠BCO,∴∠CAO=∠ACO=∠CBO=∠BCO=20°,∴∠AOD=∠CAO+∠ACO=40°,∠BOD=∠CBO+∠BCO=40°,∴∠AOB=∠AOD+∠BOD=80°.故选D.【点睛】本题主要考查圆的基本性质,三角形的外角的性质以及等腰三角形的性质,添加和数的辅助线,是解题的关键.3、C【分析】根据圆周角定理可得,再由三角形外角性质求出,解答即可.【详解】解:∵,,∴又∵,,,故选:.【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.4、D【详解】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,,解得:r=1.故选D.5、B【解析】分析:画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.详解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.6、B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG•BF=2,∴AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.7、C【分析】根据中位数的定义求解可得.【详解】原来这组数据的中位数为=2,无论去掉哪个数据,剩余三个数的中位数仍然是2,故选:C.【点睛】此题考查数据平均数、众数、中位数方差的计算方法,掌握正确的计算方法才能解答.8、D【分析】根据二次函数的图像与性质即可得出答案.【详解】由图像可知,a<0,b<0,故①错误;∵图像与x轴有两个交点∴,故②正确;当x=-3时,y=9a﹣3b+c,在x轴的上方∴y=9a﹣3b+c>0,故③正确;∵对称轴∴b-4a=0,故④正确;由图像可知,方程ax1+bx=0的两个根为x1=0,x1=﹣4,故⑤正确;故答案选择D.【点睛】本题考查的是二次函数的图像与性质,难度系数中等,解题关键是根据图像判断出a,b和c的值或者取值范围.9、C【解析】根据,可得矩形的长和宽,易知点的横坐标,的纵坐标,由反比例函数的关系式,可用含有的代数式表示另外一个坐标,由三角形相似和对称,可用求出的长,然后把问题转化到三角形中,由勾股定理建立方程求出的值.【详解】过点作,垂足为,设点关于的对称点为,连接,如图所示:则,易证,,,在反比例函数的图象上,,在中,由勾股定理:即:解得:故选C.【点睛】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现与的比是是解题的关键.10、D【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近.故选:D.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.11、B【分析】取点H(6,0),连接PH,由待定系数法可求抛物线解析式,可得点C坐标,可得⊙C半径为4,由三角形中位线的定理可求OD=PH,当点C在PH上时,PH有最大值,即可求解.【详解】如图,取点H(6,0),连接PH,∵抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),∴,解得:,∴抛物线解析式为:y=﹣,∴顶点C(﹣3,4),∴⊙C半径为4,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大时,OD有最大值,∴当点C在PH上时,PH有最大值,∴PH最大值为=3+=3+,∴OD的最大值为:,故选B.【点睛】本题主要考查了切线的性质,二次函数的性质,三角形中位线定理等知识,解决本题的关键是要熟练掌握二次函数性质和三角形中位线的性质.12、B【解析】分析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值:tan∠AOB=.故选B.二、填空题(每题4分,共24分)13、∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件为:∠B=∠P

∵∠PAB=∠QAC,

∴∠PAQ=∠BAC

∵∠B=∠P,

∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.14、0.9【分析】根据频率=频数÷数据总数计算即可得答案.【详解】∵共射击300次,其中有270次击中靶子,∴射中靶子的频率为=0.9,∴小明射击一次击中靶子的概率约为0.9,故答案为:0.9【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.15、1【分析】本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=1.【详解】解:∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△DEA(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=1.故答案为:1.【点睛】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.16、【分析】直接利用概率求法进而得出答案.【详解】∵一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.17、6【分析】设第x张为正方形纸条,由已知可知,根据相似三角形的性质有,从而可计算出x的值.【详解】如图,设第x张为正方形纸条,则∵∴∴即解得故答案为6【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.18、①③④【分析】由正方形的性质可得AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,由旋转的性质可得∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,由SAS可证△ECF≌△GCF,可得EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,即可求解.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,∴∠ECF=∠ABD=45°,∴∠BCE+∠FCD=45°,∵将△BCE绕点C旋转一定角度后,得到△DCG,∴∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,∴∠FCG=∠ECF=45°,∴∠FCG=∠CDG=45°,故①正确,∵EC=CG,∠FCG=∠ECF,FC=FC,∴△ECF≌△GCF(SAS)∴EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,∴CF平分∠BFG,故③正确,∵∠BDG=∠BDC+∠CDG=90°,∴DG2+DF2=FG2,∴BE2+DF2=EF2,故④正确,∵DF+DG>FG,∴BE+DF>EF,∴S△CEF<S△BEC+S△DFC,∴△CEF的面积<S△BCD=,故②错误;故答案为:①③④【点睛】本题是一道关于旋转的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,考查了旋转的性质、正方形的性质、全等三角形的判定及性质等知识点.三、解答题(共78分)19、(1)y=x2-4x+1;(2)点P在运动的过程中,线段PD长度的最大值为;(1)能,点P的坐标为:(1,0)或(2,-1).【分析】(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(1)分情况讨论①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;【详解】(1)把点A(1,0)和点B(1,0)代入抛物线y=x2+bx+c,得:解得∴y=x2-4x+1.(2)把x=0代入y=x2-4x+1,得y=1.∴C(0,1).又∵A(1,0),设直线AC的解析式为:y=kx+m,把点A,C的坐标代入得:∴直线AC的解析式为:y=-x+1.PD=-x+1-(x2-4x+1)=-x2+1x=+.∵0<x<1,∴x=时,PD最大为.即点P在运动的过程中,线段PD长度的最大值为.(1)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+1=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(1,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;【点睛】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,直角三角形存在性问题时需要分类讨论.20、(1)见解析;(2)【分析】(1)由∠1=∠3,依据等式的基本性质,得,结合∠B=∠D,依据两组角分别相等的三角形相似可证;(2)依据相似的性质可求.【详解】解:∵∠1=∠3,∴∠1+∠2=∠3+∠2,即,又∵∠B=∠D,∴△ABC∽△ADE.(2)∵△ABC∽△ADE,∴,又∵AB=DE=5,BC=1,∴,∴.【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练掌握相似的判定定理和性质定理,并熟悉基本图形.21、(1);(2)4.【分析】(1)将点A(﹣2,a)代入直线y=-x得A坐标,再将点A代入双曲线即可得到k值,由AB关于原点对称得到B点坐标,由BC⊥x轴,垂足为C,确定出点C坐标,将A、C代入一次函数解析式即可求解;(2)由三角形面积公式即可求解.【详解】将点A(﹣2,a)代入直线y=-x得a=-2,所以A(-2,2),将A(-2,2)代入双曲线,得k=-4,∴,∵,,,,解得,∴;(2)【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22、广告牌的高度为54.6米.【分析】由题可知:,,,先得到CD=CB,在三角形ACD中,利用正切列出关于CD的等式并解出,从而求出BC的值,加上AB的值得到AC的值,在三角形ACE中利用正切得到CE的长度,最后用CE-CD即为所求.【详解】解:∵又,在中,即答:广告牌的高度为54.6米.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的关键.23、(1)x1=2+,x2=2﹣;(2)1【分析】(1)方程利用配方法求出解即可;(2)原式利用二次根式性质,绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可求出值.【详解】(1)方程整理得:x2﹣4x=3,配方得:x2﹣4x+4=3+4,即(x﹣2)2=7,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)=1.【点睛】本题考查了利用配方法求一元二次方程的解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论