2023届内蒙古巴彦淖尔市临河区第二中学数学九上期末达标测试试题含解析_第1页
2023届内蒙古巴彦淖尔市临河区第二中学数学九上期末达标测试试题含解析_第2页
2023届内蒙古巴彦淖尔市临河区第二中学数学九上期末达标测试试题含解析_第3页
2023届内蒙古巴彦淖尔市临河区第二中学数学九上期末达标测试试题含解析_第4页
2023届内蒙古巴彦淖尔市临河区第二中学数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知抛物线具有如下性质:抛物线上任意一点到定点的距离与到轴的距离相等.如图点的坐标为,是抛物线上一动点,则周长的最小值是()A. B. C. D.2.如图,在平面直角坐标系中,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是()A.(5,2) B.(2,4) C.(1,4) D.(6,2)3.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm4.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),说法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是抛物线上两点,则y1>y2,其中说法正确的有()个.A.1 B.2 C.3 D.45.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A. B.C. D.6.如图,在正方形ABCD中,AB=2,P为对角线AC上的动点,PQ⊥AC交折线于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.7.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1 B.2 C. D.28.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=65°,∠ABC=68°,则∠A的度数为().A.112° B.68° C.65° D.52°9.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上 B.正面不向上 C.正面或反面向上 D.正面和反面都不向上10.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18二、填空题(每小题3分,共24分)11.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm1.(结果保留π)12.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;13.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为_____cm.14.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.15.点A(1,-2)关于原点对称的点A1的坐标为________.16.如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为____.

17.已知⊙O的周长等于6πcm,则它的内接正六边形面积为_____cm218.等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为.三、解答题(共66分)19.(10分)为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.投篮次数(n)50100150200250300500投中次数(m)286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?20.(6分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠FAE=30°,求大树的高度(结果保留根号).21.(6分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余3位同学中随机选取1位,则恰好选中乙同学的概率是.(2)请用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.22.(8分)如图,若是由ABC平移后得到的,且中任意一点经过平移后的对应点为(1)求点小的坐标.(2)求的面积.23.(8分)先化简,再求值:,其中x=1﹣.24.(8分)如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F(1)求证:△ABE∽△DEF;(2)求EF的长.25.(10分)抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)画出抛物线的简图并写出它与y轴的交点C的坐标;(3)根据图象直接写出:点C关于直线x=2对称点D的坐标;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(用含m、n的式子表示).26.(10分)如图以的一边为直径作⊙,⊙与边的交点恰好为的中点,过点作⊙的切线交边于点.(1)求证:;(2)若,求的值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】作过作轴于点,过点作轴于点,交抛物线于点,由结合,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值,再由点、的坐标即可得出、的长度,进而得出周长的最小值.【详解】解:作过作轴于点,由题意可知:,∴周长=,又∵点到直线之间垂线段最短,∴当、、三点共线时最小,此时周长取最小值,过点作轴于点,交抛物线于点,此时周长最小值,、,,,周长的最小值.故选:.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键.2、D【分析】根据切线的判定在网格中作图即可得结论.【详解】解:如图,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是(6,2).故选:D.【点睛】本题考查了切线的判定,掌握切线的判定定理是解题的关键.3、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180°,半径为OD的弧,故根据弧长公式计算即可.【详解】解:BD=4,

∴OD=2

∴点D所转过的路径长==2π.

故选:C.【点睛】本题主要考查了弧长公式:.4、D【分析】由抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣1时,y<0,则得到a﹣2a+c<0,则可对③进行判断;通过点(﹣5,y1)和点(,y2)离对称轴的远近对④进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=﹣1时,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正确;∵点(﹣5,y1)离对称轴要比点(,y2)离对称轴要远,∴y1>y2,所以④正确.故答案为D.【点睛】本题考查了二次函数图象与系数的关系,灵活运用二次函数解析式和图像是解答本题的关键..5、B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=.故选B.【点睛】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.6、B【分析】因为点P运动轨迹是折线,故分两种情况讨论:当点P在A—D之间或当点P在D—C之间,分别计算其面积,再结合二次函数图象的基本性质解题即可.【详解】分两种情况讨论:当点Q在A—D之间运动时,,图象为开口向上的抛物线;当点Q在D—C之间运动时,如图Q1,P1位置,由二次函数图象的性质,图象为开口向下的抛物线,故选:B.【点睛】本题考查二次函数图象基本性质、其中涉及分类讨论法、等腰直角三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.7、B【分析】作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.【详解】解:作OE⊥AD于E,连接OD,则OD=.在Rt△ODE中,易得∠EDO为45,△ODE为等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B选项是正确的.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用垂径定理与勾股定理即可解决问题.8、C【分析】由四边形ABCD内接于⊙O,可得∠BAD+∠BCD=180°,又由邻补角的定义,可证得∠BAD=∠DCE.继而求得答案.【详解】解:∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠A=∠DCE=65°.故选:C.【点睛】此题考查了圆的内接四边形的性质.注意掌握圆内接四边形的对角互补是解此题的关键.9、C【分析】根据概率公式分别求出各选项事件的概率,即可判断.【详解】解:若不考虑硬币竖起的情况,A.正面向上概率为1÷2=;B.正面不向上的概率为1÷2=;C.正面或反面向上的概率为2÷2=1;D.正面和反面都不向上的概率为0÷2=0∵1>>0∴正面或反面向上的概率最大故选C.【点睛】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.10、C【分析】根据矩形的对角线互相平分且相等可得OA=OB=AC,根据邻补角的定义求出∠AOB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,然后求解即可.【详解】∵矩形ABCD的两条对角线交于点O,∴OA=OB=AC,∵∠AOD=10°,∴∠AOB=180°-∠AOD=180°-10°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=1.故选C.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键.二、填空题(每小题3分,共24分)11、15π【分析】圆锥的侧面积=底面周长×母线长÷1.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm1.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.12、3或9或或【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴,即,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案为:3或9或或.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.13、6π【分析】直接利用弧长公式计算即可.【详解】利用弧长公式计算:该莱洛三角形的周长(cm)故答案为6π【点睛】本题考查了弧长公式,熟练掌握弧长公式是解题关键.14、1【解析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=1.故答案是:1.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.15、(-1,2)【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点A(1,-2)与点A1(-1,2)关于原点对称,∴A1(-1,2).故答案为:(-1,2).【点睛】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.16、1【解析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,则AB=AD=1.【详解】如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即该船航行的距离(即AB的长)为1.故答案为1.【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.17、【分析】首先过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:如图,过点O作OH⊥AB于点H,连接OA,OB,∴AH=AB,∵⊙O的周长等于6πcm,∴⊙O的半径为:3cm,∵∠AOB=×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∴AH=cm,∴OH==,∴S正六边形ABCDEF=6S△OAB=6××3×=,故答案为:.【点睛】本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键.18、100【解析】试题分析:先作出图象,根据含30°角的直角三角形的性质求出腰上的高,再根据三角形的面积公式即可求解.如图,∵∠B=∠C=15°∴∠CAD=30°∴CD=AC=10∴三角形的面积考点:本题考查的是三角形外角的性质,含30°角的直角三角形的性质点评:解答本题的关键是熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;30°角的所对的直角边等于斜边的一半.三、解答题(共66分)19、(1)约0.5;(2)估计这名同学投篮622次,投中的次数约是311次.【分析】(1)对于不同批次的定点投篮命中率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法;

(2)投中的次数=投篮次数×投中的概率,依此列式计算即可求解.【详解】解:(1)估计这名球员投篮一次,投中的概率约是;(2)622×0.5=311(次).故估计这名同学投篮622次,投中的次数约是311次.【点睛】本题考查频率估计概率,解题的关键是掌握频率估计概率.20、大树的高度为(9+3)米【分析】根据矩形性质得出,再利用锐角三角函数的性质求出问题即可.【详解】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,设BC米,在中,∠BAC=45°,∴AC米,∴DG=(3+)米,BG=()米,在中,∵BG=DG·tan30°,∴(3)×,解得:9+3,∴BC=(9+3)米.答:大树的高度为(9+3)米.【点睛】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.21、(1);(2)【分析】(1)确定甲打第一场,再从乙、丙、丁3位同学中随机选取1位,根据概率的性质分析,即可得到答案;(2)结合题意,根据树状图的性质分析,即可完成求解.【详解】(1)确定甲打第一场∴从其余3位同学中随机选取1位,选中乙同学的概率为故答案为:;(2)树状图如下:共有12种情况,所选2名同学中有甲、乙两位同学的有2种结果∴恰好选中甲、乙两位同学的概率为:.【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率定义和树状图的性质,从而完成求解.22、(1)(-1,5),(-2,3),(-4,4);(2)三角形面积为2.5;【分析】(1)由△ABC中任意一点P(x,y)经平移后对应点为P1(x-5,y+2)可得△ABC的平移规律为:向左平移5个单位,向上平移2个单位,由此得到点A、B、C的对应点A1、B1、C1的坐标.

(2)利用矩形的面积减去三个顶点上三角形的面积即可.【详解】解:(1)∵△ABC中任意一点P(x,y)经平移后对应点为P1(x-5,y+2),

∴△ABC的平移规律为:向左平移5个单位,向上平移2个单位,

∵A(4,3),B(3,1),C(1,2),

∴点A1的坐标为(-1,5),点B1的坐标为(-2,3),点C1的坐标为(-4,4).

(2)如图所示,

△A1B1C1的面积=3×2-×1×3-×1×2-×1×2=.【点睛】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23、1﹣x,原式=.【分析】先利用分式的加减乘除运算对分式进行化简,然后把x的值代入即可.【详解】原式=当x=1﹣时,∴原式=1﹣(1﹣)=;【点睛】本题主要考查分式的化简求值,掌握分式混合运算的顺序和法则是解题的关键.24、(1)证明见解析(2)【分析】(1)由四边形ABCD是矩形,易得∠A=∠D=90°,又由EF⊥BE,利用同角的余角相等,即可得∠DEF=∠ABE,则可证得△ABE∽△DEF.(2)由(1)△ABE∽△DEF,根据相似

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论