2023届上海市第八中学九年级数学第一学期期末质量检测试题含解析_第1页
2023届上海市第八中学九年级数学第一学期期末质量检测试题含解析_第2页
2023届上海市第八中学九年级数学第一学期期末质量检测试题含解析_第3页
2023届上海市第八中学九年级数学第一学期期末质量检测试题含解析_第4页
2023届上海市第八中学九年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B. C. D.2.在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A. B. C. D.3.若二次函数y=-x2+px+q的图像经过A(,n)、B(0,y1)、C(,n)、D(,y2)、E(,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y14.如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤45.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.56.如图,正方形的边长是3,,连接、交于点,并分别与边、交于点、,连接,下列结论:①;②;③;④当时,.正确结论的个数为()A.1个 B.2个 C.3个 D.4个7.如图,在中,.将绕点按顺时针方向旋转度后得到,此时点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为()A. B.C. D.8.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知,则球的半径长是()A.2 B.2.5 C.3 D.49.已知圆锥的底面半径为5,母线长为13,则这个圆锥的全面积是()A. B. C. D.10.已知一个单位向量,设、是非零向量,那么下列等式中正确的是().A.; B.; C.; D..11.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=212.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P,则P的值为()A. B. C.或 D.或二、填空题(每题4分,共24分)13.为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)

4

5

6

9

户数

3

4

2

1

则关于这10户家庭的约用水量,下列说法错误的是()A.中位数是5吨 B.极差是3吨 C.平均数是5.3吨 D.众数是5吨14.如图,在正方形ABCD中,对角线AC、BD交于点O,E是BC的中点,DE交AC于点F,则tan∠BDE=______.15.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.16.已知关于的方程的一个根为-2,则方程另一个根为__________.17.如图,量角器的0度刻度线为,将一矩形直角与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的度数为60°,则该直尺的宽度为_________________.18.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是_________.三、解答题(共78分)19.(8分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.证明:∽;若,求的值;如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.20.(8分)已知函数解析式为y=(m-2)(1)若函数为正比例函数,试说明函数y随x增大而减小(2)若函数为二次函数,写出函数解析式,并写出开口方向(3)若函数为反比例函数,写出函数解析式,并说明函数在第几象限21.(8分)如图,在平面直角坐标系中,抛物线y=﹣x1+1x+a交x轴于点A,B,交y轴于点C,点A的横坐标为﹣1.(1)求抛物线的对称轴和函数表达式.(1)连结BC线段,BC上有一点D,过点D作x轴的平行线交抛物线于点E,F,若EF=6,求点D的坐标.22.(10分)如图是某一蓄水池每小时的排水量/与排完水池中的水所用时间之间的函数关系的图像.(1)请你根据图像提供的信息写出此函数的函数关系式;(2)若要6h排完水池中的水,那么每小时的排水量应该是多少?23.(10分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率.24.(10分)如图1,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.点D(2,3)在该抛物线上,直线AD与y轴相交于点E,点F是直线AD上方的抛物线上的动点.(1)求该抛物线对应的二次函数关系式;(2)当点F到直线AD距离最大时,求点F的坐标;(3)如图2,点M是抛物线的顶点,点P的坐标为(0,n),点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形.①求n的值;②若点T和点Q关于AM所在直线对称,求点T的坐标.25.(12分)小明同学解一元二次方程x2﹣6x﹣1=0的过程如图所示.解:x2﹣6x=1…①x2﹣6x+9=1…②(x﹣3)2=1…③x﹣3=±1…④x1=4,x2=2…⑤(1)小明解方程的方法是.(A)直接开平方法(B)因式分解法(C)配方法(D)公式法他的求解过程从第步开始出现错误.(2)解这个方程.26.已知二次函数与轴交于、(在的左侧)与轴交于点,连接、.(1)如图1,点是直线上方抛物线上一点,当面积最大时,点分别为轴上的动点,连接、、,求的周长最小值;(2)如图2,点关于轴的对称点为点,将抛物线沿射线的方向平移得到新的拋物线,使得交轴于点(在的左侧).将绕点顺时针旋转至.抛物线的对称轴上有—动点,坐标系内是否存在一点,使得以、、、为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:

绿

绿

﹣﹣﹣

(红,红)

(红,红)

(绿,红)

(绿,绿)

(红,红)

﹣﹣﹣

(红,红)

(绿,红)

(绿,红)

(红,红)

(红,红)

﹣﹣﹣

(绿,红)

(绿,红)

绿

(红,绿)

(红,绿)

(红,绿)

﹣﹣﹣

(绿,绿)

绿

(红,绿)

(红,绿)

(红,绿)

(绿,绿)

﹣﹣﹣

∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴,故选A.2、B【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论;当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,观察只有B选项符合,故选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.3、A【分析】利用A点与C点为抛物线上的对称点得到对称轴为直线x=2,然后根据点B、D、E离对称轴的远近求解.【详解】∵二次函数y=-x2+px+q的图像经过A(,n)、C(,n),

∴抛物线开口向下,对称轴为直线,∵点D(,y2)的横坐标:,离对称轴距离为,点E(,y3)的横坐标:,离对称轴距离为,∴B(0,y1)离对称轴最近,点E离对称轴最远,∴y3<y2<y1.

故选:A.【点睛】本题考查了二次函数函数的性质,二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式,根据抛物线上的对称点坐标得到对称轴是解题的关键.4、A【分析】如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,由勾股定理可求B'A=5,由三角形中位线定理可求B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,即可求解.【详解】解:如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,∵点B(0,3),B'(0,﹣3),点A(4,0),∴OB=OB'=3,OA=4,∴,∵点P是BC的中点,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,∴,故选:A.【点睛】本题考查了三角形中位线定理,勾股定理,平面直角坐标系,解决本题的关键是正确理解题意,熟练掌握三角形中位线定理的相关内容,能够得到线段之间的数量关系.5、D【解析】根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:,∴,由抛物线与轴的交点可知:,∴,∴,故①正确;②抛物线与轴只有一个交点,∴,∴,故②正确;③令,∴,∵,∴,∴,∴,∵,∴,故③正确;④由图象可知:令,即的解为,∴的根为,故④正确;⑤∵,∴,故⑤正确;故选D.【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.6、D【分析】由四边形ABCD是正方形,得到AD=BC=AB,∠DAB=∠ABC=90°,即可证明△DAP≌△ABQ,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,故②正确;根据△CQF≌△BPE,得到S△CQF=S△BPE,根据△DAP≌△ABQ,得到S△DAP=S△ABQ,即可得到S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE的长,进而求得QE的长,证明△QOE∽△POA,根据相似三角形对应边成比例即可判断④正确,即可得到结论.【详解】∵四边形ABCD是正方形,∴AD=BC=AB,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP与△ABQ中,∵,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP.故②正确;在△CQF与△BPE中,∵,∴△CQF≌△BPE,∴S△CQF=S△BPE.∵△DAP≌△ABQ,∴S△DAP=S△ABQ,∴S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=1.∵∠P=∠P,∠EBP=∠DAP=90°,∴△PBE∽△PAD,∴,∴BE,∴QE,∵∠Q=∠P,∠QOE=∠POA=90°,∴△QOE∽△POA,∴,∴,故④正确.故选:D.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,熟练掌握全等三角形的判定和性质是解答本题的关键.7、C【解析】试题分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S阴影=DF×CF=×=.故选C.考点:1.旋转的性质2.含30度角的直角三角形.8、B【解析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.9、B【分析】先根据圆锥侧面积公式:求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=,所以这个圆锥的全面积=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.10、B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:、左边得出的是的方向不是单位向量,故错误;、符合向量的长度及方向,正确;、由于单位向量只限制长度,不确定方向,故错误;、左边得出的是的方向,右边得出的是的方向,两者方向不一定相同,故错误.故选:.【点睛】本题考查了向量的性质.11、C【解析】试题解析:x(x+1)=0,

⇒x=0或x+1=0,

解得x1=0,x1=-1.

故选C.12、D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=当白球2个,红球1个时:摸到的红球的概率为:P=故摸到的红球的概率为:或故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.二、填空题(每题4分,共24分)13、B【详解】解∵这10个数据是:4,4,4,5,5,5,5,6,6,9;∴中位数是:(5+5)÷2=5吨,故A正确;∴众数是:5吨,故D正确;∴极差是:9﹣4=5吨,故B错误;∴平均数是:(3×4+4×5+2×6+9)÷10=5.3吨,故C正确.故选B.14、【分析】设AD=DC=a,根据勾股定理求出AC,易证△AFD∽△CFE,根据相似三角形的性质,可得:=2,进而求得CF,OF的长,由锐角的正切三角函数定义,即可求解.【详解】∵四边形ABCD是正方形,∴∠ADC=90°,AC⊥BD,设AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中点,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案为:.【点睛】本题主要考查相似三角形的判定和性质定理以及正切三角函数的定义,根据题意,设AD=DC=a,表示出OF,OD的长度,是解题的关键.15、.【详解】解:∵把x=1分别代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积.故答案为:.16、1【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.17、【分析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有:解直角即可.【详解】连接OC,OD,OC与AD交于点E,直尺的宽度:故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.18、y2>y1>y1【分析】根据反比例函数的图象和性质,即可得到答案.【详解】∵反比例函数的比例系数k<0,∴在每一个象限内,y随x的增大而增大,∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y1)都在反比例函数的图象上,∴y2>y1>0,y1<0,∴y2>y1>y1.故答案是:y2>y1>y1.【点睛】本题主要考查反比例函数的图象和性质,掌握反比例函数的增减性,是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2);(3).【分析】由余角的性质可得,即可证∽;由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.【详解】证明:,又,又,∽∽,又,,如图,延长AD与BG的延长线交于H点,∽∴,由可知≌,,代入上式可得,∽,,,∴,,平分又平分,,是等腰直角三角形.∴.【点睛】本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.20、(1)详见解析;(2)y=-4x2,开口向下;(3)y=-x-1或y=-3x-1,函数在二四象限【分析】(1)根据正比例函数的定义求出m,再确定m-2的正负,即可确定增减性;(2)根据二次函数的定义求出m,再确定m-2的值,即可确定函数解析式和开口方向;(3)由题意可得-2=-1,求出m即可确定函数解析式和图像所在象限.【详解】解:(1)若为正比例函数则-2=1,m=±,∴m-2<0,函数y随x增大而减小;(2)若函数为二次函数,-2=2且m-2≠0,∴m=-2,函数解析式为y=-4x2,开口向下(3)若函数为反比例函数,-2=-1,m=±1,m-2<0,解析式为y=-x-1或y=-3x-1,函数在二四象限【点睛】本题考查了正比例、二次函数、反比例函数的定义,理解各种函数的定义及其内涵是解答本题的关键.21、(1)y=﹣x1+1x+6;对称轴为x=1;(1)点D的坐标为(1.5,3.5).【分析】(1)将点A的坐标代入函数的解析式求得a的值后即可确定二次的解析式,代入对称轴公式即可求得对称轴;(1)首先根据点A的坐标和对称轴求得点B的坐标,然后求得直线BC的解析式,从而设出点D的坐标并表示出点EF的坐标,表示出EF的长后根据EF=6求解即可.【详解】解:如图:(1)∵A点的横坐标为﹣1,∴A(﹣1,0),∵点A在抛物线y=﹣x1+1x+a上,∴﹣1﹣4+a=0,解得:a=6,∴函数的解析式为:y=﹣x1+1x+6,∴对称轴为x=﹣=﹣=1;(1)∵A(﹣1,0),对称轴为x=1,∴点B的坐标为(6,0),∴直线BC的解析式为y=﹣x+6,∵点D在BC上,∴设点D的坐标为(m,﹣m+6),∴点E和点F的纵坐标为﹣m+6,∴y=﹣x1+1x+6=﹣m+6,解得:x=1±,∴EF=1+﹣(1﹣)=1,∵EF=6,∴1=6,解得:m=1.5,∴点D的坐标为(1.5,3.5).【点睛】考查了待定系数法确定二次函数的解析式及抛物线与坐标轴的交点问题,解题的关键是正确的求得函数的解析式,难度不大.22、(1);(2)8m3【分析】(1)根据函数图象为双曲线的一支,可设,又知(12,4)在此函数图象上,利用待定系数法求出函数的解析式;(2)把t=6代入函数的解析式即可求出每小时的排水量.【详解】(1)根据函数图象为双曲线的一支,可设,又知(12,4)在此函数图象上,则把(12,4)代入解析式得:,解得k=48,则函数关系式为:;(2)把t=6代入得:,则每小时的排水量应该是8m3.【点睛】主要考查了反比例函数的应用,解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.23、(1);(2),见解析【分析】(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,摸到红球的概率即可求出;(2)分别使用树状图法或列表法将抽取球的结果表示出来,第一次共有3种不同的抽取情况,第二次有2种不同的抽取情况,所有等可能出现的结果有6种,找出两次都是白球的的抽取结果,即可算出概率.【详解】解:(1)∵袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,∴;(2)画树状图,根据题意,画树状图结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴;用列表法,根据题意,列表结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴.【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.24、(1)y=-x2+2x+3;(2)F(,);(3)n=,T(0,-)或n=-,T(0,).【分析】(1)用待定系数法求解即可;(2)作FH⊥AD,过点F作FM⊥x轴,交AD与M,易知当S△FAD最大时,点F到直线AD距离FH最大,求出直线AD的解析式,设F(t,-t2+2t+3),M(t,t+1),表示出△FAD的面积,然后利用二次函数的性质求解即可;(3)分AP为对角线和AM为对角线两种情况求解即可.【详解】解:(1)∵抛物线x轴相交于点A(-1,0),B(3,0),∴设该抛物线对应的二次函数关系式为y=a(x+1)(x-3),∵点D(2,3)在抛物线上,∴3=a×(2+1)×(2-3),∴3=-3a,∴a=-1,∴y=-(x+1)(x-3),即y=-x2+2x+3;(2)如图1,作FH⊥AD,过点F作FM⊥x轴,交AD与M,易知当S△FAD最大时,点F到直线AD距离FH最大,设直线AD为y=kx+b,∵A(-1,0),D(2,3),∴,∴,∴直线AD为y=x+1.设点F的横坐标为t,则F(t,-t2+2t+3),M(t,t+1),∵S△FAD=S△AMF+S△DMF=MF(Dx-Ax)=×3(-t2+2t+3-t-1)=×3(-t2+t+2)=-(t-)2+,∴即当t=时,S△FAD最大,∵当x=时,y=-()2+2×+3=,∴F(,);(3)∵y=-x2+2x+3=-(x-1)2+4,∴顶点M(1,4).当AP为对角线时,如图2,设抛物线对称轴交x轴于点R,作PS⊥MR,∵∠PMS+∠AMR=90°,∠MAR+∠AMR=90°,∴∠PMA=∠MAR,∵∠PSM=∠ARM=90°,∴△PMS∽△MAR,∴,∴,∴MS=,∴OP=RS=4+=,∴n=;延长QA交y轴于T,∵PM∥AQ,∴∠MPO=∠OAM,∵∠MPS+∠MPO=90°,∠OAT+∠OAM=90°,∴∠MPS=∠OAT.又∵PS=OA=1,∠PSM=∠AOT=90°,∴△PSM≌△AOT,∴AT=PM=AQ,OT=MS=.∵AM⊥AQ,∴T和Q关于AM对称,∴T(0,-);当AQ为对角线时,如图3,过A作SR⊥x轴,作PS⊥SR于S,作MR⊥SR于R,∵∠RAM+∠SAP=90°,∠SAP+∠SPA=90°,∴∠RAM=∠SPA,∵∠PSA=∠ARM=90°,∴△PSA∽△ARM,∴,∴,∴AS=,∴OP=,∴n=-;延长QM交y轴于T,∵QM∥AP,∴∠APT=∠MTP,∵∠OAP+∠APT=90°,∠GMT+∠MTP=90°,∴∠OAP=∠GMT.又∵GM=OA=1,∠AOP=∠MGT=90°,∴△OAP≌△GMT,∴MT=AP=MQ,GT=OP=.∵AM⊥TQ,∴T和Q关于AM对称,∵OT=4+=,∴T(0,).综上可知,n=,T(0,-)或n=-,T(0,).【点睛】本题考查了待定系数法求二次函数和一次函数解析式,割补法求图形的面积,利用二次函数求最值,相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质,以及分类讨论的数学思想,用到的知识点较多,难度较大,树中考压轴题.25、(1)C,②;(2)x1=+1,x2=﹣+1.【分析】(1)认真分析小明的解答过程即可发现其在第几步出现错误、然后作答即可;(2)用配方法解该二元一次方程即可.【详解】解:(1)由小明的解答过程可知,他采用的是配方法解方程,故选:C,他的求解过程从第②步

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论