版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A. B. C. D.2.已知分式的值为0,则的值是().A. B. C. D.3.下列事件中,是必然事件的是()A.某射击运动员射击一次,命中靶心B.抛一枚硬币,一定正面朝上C.打开电视机,它正在播放新闻联播D.三角形的内角和等于180°4.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35° B.45° C.55° D.65°5.已知是方程的一个根,则代数式的值等于()A.3 B.2 C.0 D.16.如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为()A.5π B.12.5π C.20π D.25π7.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣28.已知x2-2x=8,则3x2-6x-18的值为(
)A.54
B.6
C.-10
D.-189.如图,,,EF与AC交于点G,则是相似三角形共有()A.3对 B.5对 C.6对 D.8对10.若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=10cm,则线段d的长为()A.2cm B.4cm C.5cm D.6cm二、填空题(每小题3分,共24分)11.已知⊙O的直径AB=20,弦CD⊥AB于点E,且CD=16,则AE的长为_______.12.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.13.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.14.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1=.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于__________.16.已知关于的一元二次方程的一个根是2,则的值是:______.17.如图示一些小正方体木块所搭的几何体,从正面和从左面看到的图形,则搭建该几何体最多需要块正方体木块.18.如图,把直角三角形的斜边放在定直线上,按顺时针方向在上转动两次,使它转到的位置.设,,则顶点运动到点的位置时,点经过的路线长为_________.三、解答题(共66分)19.(10分)如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数.(2)若弦BC=8cm,求图中劣弧BC的长.20.(6分)如图,在四边形中,,点为的中点,.(1)求证:∽;(2)若,,求线段的长.21.(6分)已知二次函数y=x2﹣4x+1.(1)在所给的平面直角坐标系中画出它的图象;(2)若三点A(x1,y1),B(x2,y2),C(x1.y1)且2<x1<x2<x1,则y1,y2,y1的大小关系为.(1)把所画的图象如何平移,可以得到函数y=x2的图象?请写出一种平移方案.22.(8分)计算或解方程:(1)(2)23.(8分)如图1,在平面内,不在同一条直线上的三点同在以点为圆心的圆上,且的平分线交于点,连接,.(1)求证:;(2)如图2,过点作,垂足为点,作,垂足为点,延长交于点,连接.若,请判断直线与的位置关系,并说明理由.24.(8分)如图,在等腰中,,以为直径作交于点,过点作,垂足为.(1)求证:是的切线.(2)若,,求的长.25.(10分)如图,在中,,.,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点,.(1)求的长.(2)若点是线段的中点,求的值.26.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:CD=CE;(2)若AC=2,∠E=30°,求阴影部分(弓形)面积.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【详解】解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形.则是等腰直角三角形,设,则,,正八边形的边长是.则正方形的边长是.则正八边形的面积是:,阴影部分的面积是:.飞镖落在阴影部分的概率是,故选:.【点睛】本题考查了几何概率的求法:一般用阴影区域表示所求事件(A);首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.2、D【分析】分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到=0且≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据≠0,即可得到x的取值范围,由此即得答案.【详解】∵的值为0∴=0且≠0.解得:x=3.故选:D.【点睛】考核知识点:分式值为0.理解分式值为0的条件是关键.3、D【分析】根据必然事件、不可能事件、随机事件的概念解答即可.【详解】A.某射击运动员射击一次,命中靶心,是随机事件,故此选项错误;B.抛一枚硬币,一定正面朝上,是随机事件,故此选项错误;C.打开电视机,它正在播放新闻联播,是随机事件,故此选项错误;D.三角形的内角和等于180°,是必然事件.故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【解析】试题分析:由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠C=90°,又由直角三角形两锐角互余的关系即可求得∠B的度数:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选C.考点:1.圆周角定理;2.直角三角形两锐角的关系.5、A【分析】根据题意,将代入方程得,移项即可得结果.【详解】∵是方程的一个根,∴,∴,故选A.【点睛】本题考查一元二次方程的解,已知方程的根,只需将根代入方程即可.6、D【分析】首先根据圆周角的度数求得圆心角的度数,然后代入扇形的面积公式求解即可.【详解】解:∵∠ACB=45°,∴∠AOB=90°,∵半径为10,∴扇形AOB的面积为:=25π,故选:D.【点睛】考查了圆周角定理及扇形的面积公式,解题的关键是牢记扇形的面积公式并正确的运算.7、B【分析】根据题意得根的判别式,即可得出关于的一元一次不等式,解之即可得出结论.【详解】∵,,,由题意可知:,∴a>2,故选:B.【点睛】本题考查了一元二次方程(a≠0)的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.8、B【解析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【详解】∵x2−2x=8,∴3x2−1x−18=3(x2−2x)−18=24−18=1.故选:B.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.9、C【分析】根据相似三角形的判定即可判断.【详解】图中三角形有:,,,,∵,∴共有6个组合分别为:∴,,,,,故选C.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.10、C【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=5cm,b=2.5cm,c=10cm,解得:d=5.故线段d的长为5cm.故选:C.【点睛】本题主要考查成比例线段,解题突破口是根据定义ad=cb,将a,b及c的值代入计算.二、填空题(每小题3分,共24分)11、16或1【分析】结合垂径定理和勾股定理,在Rt△OCE中,求得OE的长,则AE=OA+OE或AE=OA-OE,据此即可求解.【详解】解:如图,连接OC,∵⊙O的直径AB=20∴OC=OA=OB=10∵弦CD⊥AB于点E∴CE=CD=8,在Rt△OCE中,OE=则AE=OA+OE=10+6=16,如图:同理,此时AE=OA-OE=10-6=1,故AE的长是16或1.【点睛】本题考查勾股定理和垂径定理的应用,根据题意做出图形是本题的解题关键,注意分类讨论.12、5【解析】试题解析:∵半径为10的半圆的弧长为:×2π×10=10π∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=513、2【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案为2.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.14、.【分析】根据三角形数得到x1=1,x1=3=1+1,x3=6=1+1+3,x4=10=1+1+3+4,x5=15=1+1+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即xn=1+1+3+…+n=、xn+1=,然后计算xn+xn+1可得.【详解】∵x1=1,
x1═3=1+1,
x3=6=1+1+3,
x4═10=1+1+3+4,
x5═15=1+1+3+4+5,
…
∴xn=1+1+3+…+n=,xn+1=,
则xn+xn+1=+=(n+1)1,
故答案为:(n+1)1.15、5:8【解析】试题解析:∴AE:EC=AD:DB=3:5,∴CE:CA=5:8,∴CF:CB=CE:CA=5:8.故答案为5:8.16、1【分析】先将所求式子化成,再根据一元二次方程的根的定义得出一个a、b的等式,然后将其代入求解即可得.【详解】由题意,将代入方程得:整理得:,即将代入得:故答案为:1.【点睛】本题考查了一元二次方程的根的定义、代数式的化简求值,利用一元二次方程的根的定义得出是解题关键.17、16【解析】根据俯视图标数法可得,最多有1块;故答案是1.点睛:三视图是指一个立体图形从上面、正面、侧面(一般为左侧)三个方向看到的图形,首先我们要分清三个概念:排、列、层,比较好理解,就像我们教室的座位一样,横着的为排,竖着的为列,上下的为层,如图所示的立体图形,共有两排、三列、两层.仔细观察三视图,可以发现在每一图中,并不能同时看到排、列、层,比如正视图看不到排,这个很好理解,比如在教室里,如果第一排的同学个子非常高,那么后面的同学都被挡住了,我们无法从正面看到后面的同学,也就无法确定有几排.所以,我们可以知道正视图可看到列和层,俯视图可看到排和层列,侧视图可看到排和层.18、【分析】根据题意得到直角三角形在直线上转动两次点A分别绕点B旋转120°和绕C″旋转90°,将两条弧长求出来加在一起即可.【详解】解:在Rt△ABC中,∵BC=1,,∴AB=2,∠CBA=60°,∴弧AA′=;弧A′A′′=;∴点A经过的路线的长是;故答案为:.【点睛】本题考查了弧长的计算方法及勾股定理,解题的关键是根据直角三角形的转动过程判断点A是以那一点为圆心转动多大的角度.三、解答题(共66分)19、(1)60°;(2)【分析】(1)先根据垂径定理得出BE=CE,,再根据圆周角定理即可得出∠AOC的度数;(2)连接OB,先根据勾股定理得出OE的长,由弦BC=8cm,可得半径的长,继而求劣弧的长;【详解】解:(1)连接OB,∵BC⊥OA,∴BE=CE,,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=60°;(2)连接OB得,∠BOC=2∠AOC=120°,∵弦BC=8cm,OA⊥BC,∴CE=4cm,∴OC=cm,∴劣弧的长为:【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,掌握勾股定理,垂径定理,圆周角定理是解题的关键.20、(1)见解析;(2)1.【分析】(1)由得出,从而有,等量代换之后有,再加上即可证明相似;(2)由相似三角形的性质可求出AE的长度,进而求出AB的长度,过点D作DF⊥BC于点F,则四边形ABFD是矩形,得出,从而求出CF的长度,最后利用勾股定理即可求解.【详解】(1)(2)过点D作DF⊥BC于点F∵点为的中点∵,,,DF⊥BC∴四边形ABFD是矩形【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质是解题的关键.21、(1)答案见解析;(2)y1<y2<y1;(1)先向左平移2个单位,再向上平移1个单位.【分析】(1)化成顶点式,得到顶点坐标,利用描点法画出即可;(2)根据图象即可求得;(1)利用平移的性质即可求得.【详解】(1)∵y=x2﹣4x+1=(x﹣2)2﹣1,∴顶点为(2,﹣1),画二次函数y=x2﹣4x+1的图象如图;(2)由图象可知:y1<y2<y1;故答案为y1<y2<y1;(1)∵y=x2﹣4x+1=(x﹣2)2﹣1的顶点为(2,﹣1),y=x2的顶点为(0,0),∴二次函数y=x2﹣4x+1=(x﹣2)2﹣1先向左平移2个单位,再向上平移1个单位可以得到函数y=x2的图象.【点睛】本题考查二次函数的图象与性质,解题的关键是掌握二次函数的图象与性质.22、(1)5-;(2)x1=-2,x2=【分析】(1)利用完全平方差公式以及化简二次根式和代入特殊三角函数进行计算即可;(2)由题意观察原方程,可用因式分解法中十字相乘法或者公式法求解.【详解】(1)计算:解:原式=7-4++2××=7-4+2-2+=5-.(2)解法一:(2x-3)(x+2)=02x-3=0或x+2=0,x1=-2,x2=.解法二:a=2,b=1,c=-6,△=b2-4ac=12-4×2×(-6)=49,x=,x1=-2,x2=.【点睛】本题主要考查用因式分解法解一元二次方程以及实数的综合运算,涉及的知识点有特殊角的三角形函数值、完全平方差公式以及二次根式的分母有理化等.23、(1)见解析(2)见解析【分析】(1)根据角平分线的定义和圆周角定理的推论,即可得到结论;(2)连接,过作交的延长线于,由为直径,得,由,得,进而可得,即可得到结论.【详解】(1)∵平分,∴,∴,∴;(2)直线与相切,理由如下:连接,过作交的延长线于,∵为直径,∴,∴,∵,∴,∴,∵,∴,∴为的切线.【点睛】本题主要考查垂径定理和圆的切线的判定定理,掌握圆的切线的判定定理,是解题的关键.24、(1)见解析;(2)【解析】(1)连结,根据等腰三角形性质和等量代换得,由垂直定义和三角形内角和定理得,等量代换得,由平角定义得,从而可得证.(2)连结,由圆周角定理得,根据等腰三角形性质和三角形外角性质可得,在中,由直角三角形性质得,在中,由直角三角形性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业自动化生产技术手册
- 学校消防安全教育手册
- 媒体平台内容审核与发布规则
- 娱乐业活动策划执行预案
- 大数据在医疗领域的应用与创新发展
- 多式联运智慧物流平台构建方案
- 数学教研组主题活动方案
- 员工内部食堂管理方案
- 塔吊司机管理制度
- 员工带薪年休假管理制度
- 数字0-10-空白田字格(带笔顺)
- 【直接打印】鲁教版(五四学制)七年级上册地理期末知识点复习提纲
- 化解村级债务责任状模版
- 食品质量与安全专业大学生职业生涯规划书
- 自动化设备操作规程
- 政府采购法考试题库及答案(通用版)
- ED1000治疗ED的有效性
- 江苏盐城市实验小学2022-2023五年级上册语文期中试卷及答案
- 心理咨询和治疗:29 EMDR
- 精神科出走防范预案及应急处理流程
- 镍包覆石墨复合粉体的制备及热喷涂涂层的性能研究
评论
0/150
提交评论