版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列事件中,必然事件是()A.一定是正数B.八边形的外角和等于C.明天是晴天D.中秋节晚上能看到月亮2.如图,在平面直角坐标系中,若反比例函数过点,则的值为()A. B. C. D.3.如图,在中,,将绕点逆时针旋转得到,其中点与点是对应点,且点在同一条直线上;则的长为()A. B. C. D.4.已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定5.抛物线y=(x-4)(x+2)的对称轴方程为()A.直线x=-2 B.直线x=1 C.直线x=-4 D.直线x=46.下列根式是最简二次根式的是()A. B. C. D.7.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(
)A. B. C. D.38.数据60,70,40,30这四个数的平均数是()A.40 B.50 C.60 D.709.已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是()A.4cm B.8cm C.16cm D.32cm10.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形二、填空题(每小题3分,共24分)11.二中岗十字路口南北方向的红绿灯设置为:红灯30秒,绿灯60秒,黄灯3秒,小明由南向北经过路口遇到红灯的概率为______.12.如图,有一斜坡,坡顶离地面的高度为,斜坡的倾斜角是,若,则此斜坡的为____m.13.在等边三角形中,于点,点分别是上的动点,沿所在直线折叠后点落在上的点处,若是等腰三角形,则____.14.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,以此类推,为了投资少而获利大,每个遮阳伞每天应提高_______________。15.若是一元二次方程的两个根,则=___________.16.关于x的分式方程有增根,则m的值为__________.17.点A(-1,m)和点B(-2,n)都在抛物线上,则m与n的大小关系为m______n(填“”或“”).18.在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.三、解答题(共66分)19.(10分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,,摆动臂可绕点旋转,.(1)在旋转过程中①当、、三点在同一直线上时,求的长,②当、、三点为同一直角三角形的顶点时,求的长.(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,如图2,此时,,求的长.(3)若连接(2)中的,将(2)中的形状和大小保持不变,把绕点在平面内自由旋转,分别取、、的中点、、,连接、、、随着绕点在平面内自由旋转,的面积是否发生变化,若不变,请直接写出的面积;若变化,的面积是否存在最大与最小?若存在,请直接写出面积的最大值与最小值,(温馨提示)20.(6分)如图,一块三角形的铁皮,边为,边上的高为,要将它加工成矩形铁皮,使它的的一边在上,其余两个顶点、分别在、上,(1)若四边形是正方形,那么正方形边长是多少?(2)在矩形EFGH中,设,,①求与的函数关系,并求出自变量的取值范围;②取多少时,有最大值,最大值是多少?21.(6分)如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为的中点时,求AF的值.22.(8分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?23.(8分)已知抛物线(1)抛物线经过原点时,求的值;(2)顶点在轴上时,求的值.24.(8分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.(1)求证:AC是⊙O的切线;(2)若,,求BF的长.25.(10分)如图,在△ABC中,∠ACB=90º,∠ABC=45º,点O是AB的中点,过A、C两点向经过点O的直线作垂线,垂足分别为E、F.(1)如图①,求证:EF=AE+CF.(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.26.(10分)(1)计算:.(2)如图,正方形纸板在投影面上的正投影为,其中边与投影面平行,与投影面不平行.若正方形的边长为厘米,,求其投影的面积.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、a2一定是非负数,则a2一定是正数是随机事件;B、八边形的外角和等于360°是必然事件;C、明天是晴天是随机事件;D、中秋节晚上能看到月亮是随机事件;故选B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【解析】把代入求解即可.【详解】反比例函数过点,,故选:.【点睛】本题考查反比例函数图象上的点的特征,解题的关键是熟练掌握基本知识,属于中考常考题型.3、A【分析】根据旋转的性质说明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【详解】解:根据旋转的性质可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=1.故选:A.【点睛】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量.4、C【解析】由⊙O的半径分别是3,点P到圆心O的距离为4,根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.【详解】解:∵⊙O的半径分别是3,点P到圆心O的距离为4,∴点P与⊙O的位置关系是:点在圆外.故选:C.【点睛】本题考查了点与圆的位置关系.注意若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5、B【解析】把抛物线解析式整理成顶点式解析式,然后写出对称轴方程即可.【详解】解:y=(x+2)(x-4),=x2-2x-8,=x2-2x+1-9,=(x-1)2-9,∴对称轴方程为x=1.故选:B.【点睛】本题考查了二次函数的性质,是基础题,把抛物线解析式整理成顶点式解析式是解题的关键.6、A【解析】试题分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A.符合最简二次根式的两个条件,故本选项正确;B.被开方数含分母,不是最简二次根式,故本选项错误;C.被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D.被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误.故选A.7、B【解析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【详解】由图形折叠可得BE=EG,DF=FG,∵正方形ABCD的边长为3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正确选项为B.【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.8、B【分析】用四个数的和除以4即可.【详解】(60+70+40+30)÷4=200÷4=50.故选B.【点睛】本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).9、C【分析】连接CE,先由三角形内角和定理求出∠B的度数,再由线段垂直平分线的性质及三角形外角的性质求出∠CEA的度数,由直角三角形中30°所对的直角边是斜边的一半即可解答.【详解】解:连接CE,∵Rt△ABC中,∠A=90°,∠BCA=75°,∴∠B=90°﹣∠BCA=90°﹣75°=15°,∵DE垂直平分BC,∴BE=CE,∴∠BCE=∠B=15°,∴∠AEC=∠BCE+∠B=30°,∵Rt△AEC中,AC=8cm,∴CE=2AC=16cm,∵BE=CE,∴BE=16cm.故选:C.【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质、三角形外角的性质和直角三角形的性质,掌握垂直平分线的性质、等边对等角、三角形外角的性质和30°所对的直角边是斜边的一半是解决此题的关键.10、C【解析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.二、填空题(每小题3分,共24分)11、【解析】∵该路口红灯30秒,绿灯60秒,黄灯3秒,∴爸爸随机地由南往北开车经过该路口时遇到红灯的概率是,故答案为:.12、1.【分析】由三角函数定义即可得出答案.【详解】解:∵,,∴;故答案为:1.【点睛】本题考查了解直角三角形的应用;熟练掌握三角函数定义是解题的关键.13、,或【分析】根据等边三角形的性质,得到CD=3,BD=,∠CBD=30°,由折叠的性质得到,,,由是等腰三角形,则可分为三种情况就那些讨论:①,②,③,分别求出答案,即可得到答案.【详解】解:∵在等边三角形中,,∴CD=3,BD=,∠CBD=30°,∵沿所在直线折叠后点落在上的点处,∴,,,由是等腰三角形,则①当时,如图,∴,∴,∴是等腰直角三角形,∴,,∵,∴,解得:;∴;②当,此时点与点D重合,如图,∴;③当,此时点F与点D重合,如图,∴,∴;综合上述,的长度为:,或;故答案为:,或.【点睛】本题考查了等边三角形的性质,折叠的性质,以及等腰三角形的性质,熟练运用折叠的性质是本题的关键.注意利用分类讨论的思想进行解题.14、4元或6元【分析】设每个遮阳伞每天应提高x元,每天获得利润为S,每个每天应收费(10+x)元,每天的租出量为(100-×10=100-5x)个,由此列出函数解析式即可解答.【详解】解:设每个遮阳伞每天应提高x元,每天获得利润为S,由此可得,
S=(10+x)(100-×10),
整理得S=-5x2+50x+1000,
=-5(x-5)2+1125,
因为每天提高2元,则减少10个,所以当提高4元或6元的时候,获利最大,
又因为为了投资少而获利大,因此应提高6元;
故答案为:4元或6元.【点睛】此题考查运用每天的利润=每个每天收费×每天的租出量列出函数解析式,进一步利用题目中实际条件解决问题.15、1【分析】根据韦达定理可得,,将整理得到,代入即可.【详解】解:∵是一元二次方程的两个根,∴,,∴,故答案为:1.【点睛】本题考查韦达定理,掌握,是解题的关键.16、1.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案为1.17、<.【解析】试题解析:当时,当时,故答案为:18、【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,
边长为30cm的正方形ABCD的面积=302=900cm2,
∴P(飞镖落在圆内)=,故答案为:.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.三、解答题(共66分)19、(1)①或;②长为或;(2);(3)的面积会发生变化;存在,最大值为:,最小值为:【分析】(1)①分两种情形分别求解即可;
②显然不能为直角;当为直角时,根据计算即可;当为直角时,根据计算即可;(2)连接,,证得为等腰直角三角形,根据SAS可证得,根据条件可求得,根据勾股定理求得,即可求得答案;(3)根据三角形中位线定理,可证得是等腰直角三角形,求得,当取最大时,面积最大,当取最小时,面积最小,即可求得答案.【详解】(1)①,或;②显然不能为直角;当为直角时,,即,解得:;当为直角时,,即,;综上:长为或;(2)如图,连接,,根据旋转的性质得:为等腰直角三角形,∴,,,,,,,在和中,,,,又∵,,,;(3)发生变化,存在最大值和最小值,理由:如图,点P,M分别是,的中点,,,点N,P分别是,的中点,,,,,是等腰三角形,,,,,,,,,是等腰直角三角形;∴,当取最大时,面积最大,∴,当取最小时,面积最小,∴故:的面积发生变化,存在最大值和最小值,最大值为:,最小值为:.【点睛】本题是几何变换综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,有一定的难度.20、(1)48mm;(2)①;②x=40,S的最大值是2400.【分析】(1)首先得出,进而利用相似三角形的性质求出即可;(2)利用正方形的判定方法得出邻边关系进而得出答案;(3)由根据二次函数的最值即可求.【详解】解:(1),,,设正方形的边长为答:这个正方形的边长是.(2)①在矩形中,设,,由(1)可得:得②由题意得,∴∴时,的最大值是2400.【点睛】此题主要考查了相似三角形的判定与性质以及正方形的判定、二次函数的应用,得出是解题关键.21、(1)见解析;(2)【分析】(1)根据条件得出=,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,再根据(1)中△AFC∽△ACE,得出=,从而计算出AF的长度.【详解】(1)∵CD⊥AB,AB是⊙O的直径∴=∴∠AFC=∠ACD.∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC∴△AFC∽△ACE(2)∵四边形ACDF内接于⊙O∴∠AFD+∠ACD=180°∵∠AFD+∠DFE=180°∴∠DFE=∠ACD∵∠AFC=∠ACD∴∠AFC=∠DFE.∵△AFC∽△ACE∴∠ACF=∠DEF.∵F为的中点∴AF=DF.∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF∴△ACF≌△DEF.∴AC=DE=1.∵CD⊥AB,AB是⊙O的直径∴CH=DH=2.∴EH=8在Rt△AHC中,AH2=AC2-CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=4.∵△AFC∽△ACE∴=,即=,∴AF=.【点睛】本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形.22、(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)2019年该贫困户的家庭年人均纯收入能达到4200元.【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【详解】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,依题意,得:解得答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为.(2),答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23、(1)m=;(2)m=4或m=﹣1【分析】(1)抛物线经过原点,则,由此求解;(2)顶点在轴上,则,由此可以列出有关的方程求解即可;【详解】解:(1)∵抛物线y=x2﹣2mx+3m+4经过原点,∴3m+4=0,解得:m=(2)∵抛物线y=x2﹣2mx+3m+4顶点在x轴上,∴b2﹣4ac=0,∴(﹣2m)2﹣4×1×(3m+4)=0,解得:m=4或m=﹣1【点睛】本题考查了二次函数的性质,熟练掌握二次函数的有关性质是解决此类题的关键.24、(1)证明见解析;(2).【分析】(1)连接AD,如图,根据圆周角定理,再根据切线的判定定理得到AC是⊙O的切线;(2)作F做FH⊥AB于点H,利用余弦定义,再根据三角函数定义求解即可【详解】(1)证明:如图,连接AD.∵E是中点,∴.∴∠DAE=∠EAB.∵∠C=2∠EAB,∴∠C=∠BAD.∵AB是⊙O的直径.∴∠ADB=∠ADC=90°.∴∠C+∠CAD=90°.∴∠BAD+∠CAD=90°.即BA⊥AC∴AC是⊙O的切线.(2)解:如图②,过点F做FH⊥AB于点H.∵AD⊥BD,∠DAE=∠EAB,∴F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度个人智能机器人融资担保服务协议3篇
- 2024年食品行业知识产权许可合同
- 补偿机构支架课程设计
- 2025年度消防工程维保项目招标合同范本3篇
- 二零二五年度二手车买卖合同模板(含纠纷解决机制)2篇
- 2025年度安全生产信息化平台建设合同范本2篇
- 2025年度消防安全教育宣传合同3篇
- 2025版建筑行业施工人员劳动合同参考书2篇
- 荧光光谱课程设计
- 绘画课程设计创意作品
- 单位工程、分部工程、分项工程及检验批划分方案
- 七年级数学资料培优汇总精华
- 器乐Ⅰ小提琴课程教学大纲
- 主债权合同及不动产抵押合同(简化版本)
- 服装厂安全生产责任书
- JGJ202-2010建筑施工工具式脚手架安全技术规范
- 液压爬模系统作业指导书
- 2018-2019学年北京市西城区人教版六年级上册期末测试数学试卷
- SFC15(发送)和SFC14(接收)组态步骤
- LX电动单梁悬挂说明书
- 旅行社公司章程53410
评论
0/150
提交评论