版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,太阳在房子的后方,那么你站在房子的正前方看到的影子为()A.B.C.D.2.已知x=-1是关于x的方程2ax2+x-a2=0的一个根,则a的值是()A.1 B.-1 C.0 D.无法确定3.一个不透明的袋中装有2个红球和4个黄球,这些球除颜色外完全相同.从袋中随机摸出一个球,摸到黄球的概率是()A. B. C. D.4.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.5.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数()A.1个 B.2个 C.3个 D.4个6.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40° B.35° C.30° D.45°7.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为()A. B. C. D.8.下列事件中,属于必然事件的是()A.明天太阳从北边升起 B.实心铅球投入水中会下沉C.篮球队员在罚球线投篮一次,投中 D.抛出一枚硬币,落地后正面向上9.下列一元二次方程中,有一个实数根为1的一元二次方程是()A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=010.已知,则下列各式不成立的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,点的坐标分别是,,若二次函数的图象过两点,且该函数图象的顶点为,其中,是整数,且,,则的值为__________.12.已知A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函数y=﹣图象上的三个点,把y1与、的的值用小于号连接表示为________.13.如图,在中,、分别是、的中点,点在上,是的平分线,若,则的度数是________.14.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=2,则此三角形移动的距离AA′=_______.15.计算:=_____.16.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.17.如果,那么的值为______.18.若,那么△ABC的形状是___.三、解答题(共66分)19.(10分)科研人员在测试火箭性能时,发现火箭升空高度与飞行时间之间满足二次函数.(1)求该火箭升空后飞行的最大高度;(2)点火后多长时间时,火箭高度为.20.(6分)如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线过点A(—1,0),与⊙C相切于点D,求直线的解析式.21.(6分)如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)22.(8分)在平面直角坐标系中,对于点和实数,给出如下定义:当时,以点为圆心,为半径的圆,称为点的倍相关圆.例如,在如图1中,点的1倍相关圆为以点为圆心,2为半径的圆.(1)在点中,存在1倍相关圆的点是________,该点的1倍相关圆半径为________.(2)如图2,若是轴正半轴上的动点,点在第一象限内,且满足,判断直线与点的倍相关圆的位置关系,并证明.(3)如图3,已知点,反比例函数的图象经过点,直线与直线关于轴对称.①若点在直线上,则点的3倍相关圆的半径为________.②点在直线上,点的倍相关圆的半径为,若点在运动过程中,以点为圆心,为半径的圆与反比例函数的图象最多有两个公共点,直接写出的最大值.23.(8分)如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成面积为200m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.24.(8分)有四组家庭参加亲子活动,A、B、C、D分别代表四个家长,他们的孩子分别是a、b、c、d,若主持人随机从家长、孩子中各选择一个,请你用树状图或列表的方法求出选中的两人刚好是同一个家庭的概率.25.(10分)交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路1上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:=1.41,=1.73).26.(10分)如图①,若抛物线的顶点在抛物线上,抛物线的顶点在抛物线上,(点与点不重合),我们把这样的两条抛物线和,互称为“友好”抛物线.(1)一条抛物线的“友好”抛物线有条;(2)如图②,已知抛物线与轴相交于点,点关于抛物线的对称轴的对称点为点,求以点为顶点的的“友好”抛物线的表达式;(3)若抛物线的“友好”抛物线的解析式为,请直接写出与的关系式.
参考答案一、选择题(每小题3分,共30分)1、C【解析】根据平行投影的性质可知烟囱的影子应该在右下方,房子左边对应的突起应该在影子的左边.2、A【分析】根据一元二次方程解的定义,把x=-1代入2ax2+x-a2=0得到关于a的方程,然后解此方程即可.【详解】解:∵x=-1是关于x的方程2ax2+x-a2=0的一个根,∴2a-1-a2=0∴1-2a+a2=0,∴a1=a2=1,∴a的值为1故选:A【点睛】本题考查一元二次方程的解和解一元二次方程,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型3、B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵地口袋中共有2+4=6个球,其中黄球3个,∴随机抽取一个球是黄球的概率是.故选B.考点:概率.4、B【解析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.5、C【分析】利用平行线的性质角、平分线的定义、相似三角形的判定和性质一一判断即可.【详解】解:∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴△BQD是等腰三角形,故①正确,∵QD=DF,∴BQ=PD,故②正确,∵PQ∥AB,∴=,∵AC与BC不相等,∴BQ与PA不一定相等,故③错误,∵∠PCQ=90°,QD=PD,∴CD=QD=DP,∵△ABC∽△PQC,∴=()2=()2=(1+)2,故④正确,故选:C.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.6、C【分析】连接,即,又,故,所以;又因为为切线,利用切线与圆的关系即可得出结果.【详解】解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选C.【点睛】本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.7、B【解析】在直角三角形ABC中,利用30度所对的直角边等于斜边的一半表示出AB的长,再利用勾股定理求出BC的长,由CB+BD求出CD的长,在直角三角形ACD中,利用锐角三角函数定义求出所求即可.【详解】在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°,BC=k,∴∠CAD=∠CAB+∠BAD=75°,在Rt△ACD中,CD=CB+BD=k+2k,则tan75°=tan∠CAD===2+,故选B【点睛】本题考查了解直角三角形,熟练掌握三角函数是解题的关键.8、B【解析】必然事件就是一定会发生的事件,依据定义即可判断.【详解】A、明天太阳从北边升起是不可能事件,错误;B、实心铅球投入水中会下沉是必然事件,正确;C、篮球队员在罚球线投篮一次,投中是随机事件,错误;D、抛出一枚硬币,落地后正面向上是随机事件,错误;故选B.【点睛】考查的是必然事件、不可能事件、随机事件的概念,必然事件是指在一定条件下,一定发生的事件.9、D【分析】由题意,把x=1分别代入方程左边,然后进行判断,即可得到答案.【详解】解:当x=1时,分别代入方程的左边,则A、1+2=,故A错误;B、1-4+4=1,故B错误;C、1+4+10=15,故C错误;D、1+4-5=0,故D正确;故选:D.【点睛】本题考查了一元二次方程的解,解题的关键是分别把x=1代入方程进行解题.10、D【分析】利用比例的性质进行逐一变形,比较是否与题目一致,即可得出答案.【详解】A:因为所以ab=cd,故A正确;B:因为所以ab=cd,故B正确;C:因为所以(a+c)b=(d+b)c,化简得ab=cd,故选项C正确;D:因为所以(a+1)(b+1)=(d+1)(c+1),化简得ab+a+b=cd+d+c,故选项D错误;故答案选择D.【点睛】本题考查的是比例的性质,难度不大,需要熟练掌握相关基础知识,重点需要熟练掌握去括号法则.二、填空题(每小题3分,共24分)11、,【分析】先将A,B两点的坐标代入,消去c可得出b=1-7a,c=10a,得出xM=-=,yM=.方法一:分以下两种情况:①a>0,画出示意图,可得出yM=0,1或2,进而求出a的值;②a<0时,根据示意图可得,yM=5,6或7,进而求出a的值;方法二:根据题意可知或7①,或7②,由①求出a的值,代入②中验证取舍从而可得出a的值.【详解】解:将A,B两点的坐标代入得,,②-①得,3=21a+3b,∴b=1-7a,c=10a.∴原解析式可以化为:y=ax2+(1-7a)x+10a.∴xM=-=,yM=,方法一:①当a>0时,开口向上,∵二次函数经过A,B两点,且顶点中,x,y均为整数,且,,画出示意图如图①,可得0≤yM≤2,∴yM=0,1或2,当yM=0时,解得a=,不满足xM为整数的条件,舍去;当yM=1时,解得a=1(a=不符合条件,舍去);当yM=2时,解得a=,符合条件.②a<0时,开口向下,画出示意图如图②,根据题中条件可得,5≤yM≤7,只有当yM=5,a=-时,当yM=6,a=-1时符合条件.综上所述,a的值为,.方法二:根据题意可得或7;或7③,∴当时,解得a=,不符合③,舍去;当时,解得a=,不符合③,舍去;当时,解得a=,符合③中条件;当时,解得a=1,符合③中条件;当时,解得a=-1,符合③中条件;当时,解得a=-,符合③中条件;当时,解得a=-,不符合③舍去;当时,解得a=-,不符合③舍去;综上可知a的值为:,.故答案为:,【点睛】本题主要考查二次函数的解析式、顶点坐标以及函数图像的整数点问题,掌握基本概念与性质是解题的关键.12、【分析】根据反比例函数图象上点的坐标特征可分别计算出y1,y2,y3的值即可判断.【详解】∵A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函数y=﹣图象上的三个点,∴,,,∴,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,由反比例函数确定函数值即可.13、100°【分析】利用三角形中位线定理可证明DE//BC,再根据两直线平行,同位角相等可求得∠AED,再根据角平分线的定义可求得∠DEF,最后根据两直线平行,同旁内角互补可求得∠EFB的度数.【详解】解:∵在△ABC中,D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,
∴∠AED=∠C=80°,∠DEF+∠EFB=180°,
又ED是∠AEF的角平分线,
∴∠DEF=∠AED=80°,
∴∠EFB=180°-∠DEF=100°.
故答案为:100°.【点睛】本题考查三角形中位线定理,平行线的性质定理,角平分线的有关证明.能得出DE是ABC中位线,并根据三角形的中位线平行于第三边得出DE∥BC是解题关键.14、【分析】由题意易得阴影部分与△ABC相似,然后根据相似三角形的面积比是相似比的平方可求解.【详解】解:把△ABC沿AB边平移到△A′B′C′的位置,,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,AB=2,即,;故答案为.【点睛】本题主要考查相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.15、【详解】解:原式=.故答案为.16、1【解析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案为1.考点:代数式求值.17、【分析】利用因式分解法求出的值,再根据可得最终结果.【详解】解:原方程可化为:,解得:或,∵,∴.故答案为:.【点睛】本题考查的知识点是解一元二次方程以及锐角三角函数的定义,熟记正弦的取值范围是解此题的关键.18、等边三角形【分析】由非负性和特殊角的三角函数值,求出∠A和∠B的度数,然后进行判断,即可得到答案.【详解】解:,∴,,∴∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形;故答案为:等边三角形.【点睛】本题考查了特殊角的三角函数值,非负性的应用,解题的关键是熟练掌握非负数的性质,正确得到∠A和∠B的度数.三、解答题(共66分)19、(1)该火箭升空后飞行的最大高度为;(2)点火后和时,火箭高度为.【分析】(1)直接利用配方法将二次函数写成顶点式,进而求出即可;(2)把直接带入函数,解得的值即为所求.【详解】解:(1)由题意可得:.该火箭升空后飞行的最大高度为.(2)时,.解得:或.点火后和时,火箭高度为.【点睛】本题考查了二次函数的应用,明确与的值是解题的关键.20、或.【详解】解:如图所示,连接CD,∵直线为⊙C的切线,∴CD⊥AD.∵C点坐标为(1,0),∴OC=1,即⊙C的半径为1,∴CD=OC=1.又∵点A的坐标为(—1,0),∴AC=2,∴∠CAD=30°,在Rt△AOB中,,即,设直线l解析式为:y=kx+b(k≠0),则解得∴直线l的函数解析式为,同理可得,当直线l在x轴的下方时,直线l的函数解析式为.故直线l的函数解析式为或.【点睛】这是一道圆与直角坐标系的综合题,求直线的解析式,通常用待定系数法(知道图象上两个点的坐标即可),题目已给出点A的坐标,再求出一个点即可,抓住点D是直线与⊙C的切点,由C点坐标为(1,0)及圆的性质易求点B的坐标为(0,),由点A和点B的坐标易求直线的解析式21、台灯的高约为45cm.【分析】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,可得四边形DGFH是矩形,可得DG=FH,根据∠A的余弦可求出AC的长,进而可得AD的长,根据∠A的正弦即可求出DG的长,由∠ADE=135°可得∠EDH=15°,根据∠DEH的正弦可得EH的长,根据EF=EH+FH求出EF的长即可得答案.【详解】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,∴四边形DGFH是矩形,∴DG=FH,∵∠A=60°,AB=16,∴AC=AB·cos60°=16×=8,∴AD=AC+CD=8+40=48,∴DG=AD·sin60°=24,∵DH⊥EF,AF⊥EF,∴DH//AF,∴∠ADH=180°-∠A=120°,∵∠ADE=135°,∴∠EDH=∠ADE-∠ADH=15°,∵DE=15,∴EH=DE·sin15°≈3.9,∴EF=EH+FH=EH+DG=24+3.9≈45,答:台灯的高约为45cm.【点睛】本题主要考查解直角三角形的应用,正确应用锐角三角函数的关系是解题关键.22、(1)解:,3(2)解:直线与点的倍相关圆的位置关系是相切.(3)①点的3倍相关圆的半径是3;②的最大值是.【分析】(1)根据点的倍相关圆的定义即可判断出答案;(2)设点的坐标为,求得点的倍相关圆半径为,再比较与点到直线直线的距离即可判断;(3)①先求得直线的解析式,【详解】(1)的1倍相关圆,半径为:,的1倍相关圆,半径为:,不符合,故答案为:,3;(2)解:直线与点的倍相关圆的位置关系是相切,证明:设点的坐标为,过点作于点,∴点的倍相关圆半径为,∴,∵,∴,∴点的倍相关圆半径为,∴直线与点的倍相关圆相切,(3)①∵反比例函数的图象经过点,∴,∴点B的坐标为:,∵直线经过点和,设直线的解析式为,把代入得:,∴直线的解析式为:,∵直线与直线关于轴对称,∴直线的解析式为:,∵点在直线上,设点C的坐标为:,∴点的3倍相关圆的半径是:,故点的3倍相关圆的半径是3;②的最大值是.【点睛】本题是圆的综合题,主要考查了新定义,理解和应用新定义解决问题,点和圆的位置关系、直线和圆的位置关系,还涉及到平面坐标系内,一次函数的性质,反比例函数的性质,两点间的距离公式,解题的关键是灵活运用所学知识解决问题,熟练掌握待定系数法,属于中考压轴题.23、(1)长和宽分别为18m,10m;(2)不能,理由见解析【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【详解】解:(1)设AB=x,则BC=38-2x.根据题意,得x(38-2x)=180,解得x1=10,x2=9.当x=10时,38-2x=18;当x=9时,38-2x=20>19,不符合题意,舍去.答:若围成的面积为180m2,自行车车棚的长和宽分别为18m,10m.(2)不能,理由如下:根据题意,得x(38-2x)=200,整理,得x2-19x+100=0.∵Δ=b2-4ac=361-400=-39<0,∴此方程没有实数根.∴不能围成面积为200m2的自行车车棚.【点睛】本题考查一元二次方程的应用,熟练掌握计算法则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省大连市中山区2024-2025学年八年级上学期期中考试物理试卷(含答案)
- 2024-2025学年山东省德州市齐河县马集中学七年级(上)第一次月考数学试卷(含答案)
- 地方公务员浙江申论33
- 地方公务员辽宁申论99
- 2021年山东省淄博市中考数学试卷(解析版)
- 河北行政职业能力模拟68
- 文创公司管理手册
- 2003年云南省录用国家公务员考试《申论》试题
- 2015年7月17日山东省公务员无领导小组讨论面试真题
- 湖南公务员面试模拟41
- 高中物理选修《变压器》PPT
- 智慧燃气安全监管平台解决方案
- 公司资金中心管理办法
- 楼板配筋计算表格(自动版)
- 南宁市生育保险待遇申报表
- DB64∕T 1754-2020 宁夏砖瓦用粘土矿产地质勘查技术规程
- 电商平台相关业务操作
- 八年级英语上册1-6单元适当形式填空
- 《锅炉水容积测试技术规范》团体标准
- 肠梗阻导管临床应用与护理课件
- 高速公路总体施工组织布置及规划方案
评论
0/150
提交评论