2023届河北省唐市山乐亭县数学九年级第一学期期末联考试题含解析_第1页
2023届河北省唐市山乐亭县数学九年级第一学期期末联考试题含解析_第2页
2023届河北省唐市山乐亭县数学九年级第一学期期末联考试题含解析_第3页
2023届河北省唐市山乐亭县数学九年级第一学期期末联考试题含解析_第4页
2023届河北省唐市山乐亭县数学九年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,中,弦相交于点,连接,若,,则()A. B. C. D.2.下列事件属于随机事件的是()A.旭日东升 B.刻舟求剑 C.拔苗助长 D.守株待兔3.在同一直角坐标系中,一次函数与反比例函数的图象大致是()A. B. C. D.4.已知二次函数(是常数),下列结论正确的是()A.当时,函数图象经过点B.当时,函数图象与轴没有交点C.当时,函数图象的顶点始终在轴下方D.当时,则时,随的增大而增大.5.一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米 B.36米 C.米 D.米6.如图,已知⊙O的半径为4,四边形ABCD为⊙O的内接四边形,且AB=4,AD=4,则∠BCD的度数为()A.105° B.115° C.120° D.135°7.如图,与是位似图形,相似比为,已知,则的长()A. B. C. D.8.方程的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-19.如图,周长为28的菱形中,对角线、交于点,为边中点,的长等于()A.3.5 B.4 C.7 D.1410.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是()A.代入法 B.列举法 C.从特殊到一般 D.反证法11.一元二次方程的根的情况是A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根12.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣2二、填空题(每题4分,共24分)13.方程x2+2x+m=0有两个相等实数根,则m=___________.14.若代数式有意义,则的取值范围是____________.15.已知等腰三角形的两边长是方程x2﹣9x+18=0的两个根,则该等腰三角形的周长为_____.16.如图,为测量某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=10m,EC=5m,CD=8m,则河的宽度AB长为______________m.17.如图,已知菱形的面积为,的长为,则的长为__________.18.若=,则的值为______.三、解答题(共78分)19.(8分)已知抛物线y=x2+bx+c经过原点,对称轴为直线x=1,求该抛物线的解析式.20.(8分)如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠BAO=30°,AB=BO,反比例函数y=(x<0)的图象经过点A(1)求∠AOB的度数(2)若OA=,求点A的坐标(3)若S△ABO=,求反比例函数的解析式21.(8分)已知,如图,是直角三角形斜边上的中线,交的延长线于点.求证:;若,垂足为点,且,求的值.22.(10分)如图,已知抛物线经过点和点,与轴交于点.(1)求此抛物线的解析式;(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.①用含的代数式表示线段的长;②连接,,求的面积最大时点的坐标;(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、、、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.23.(10分)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数随时间()变化的函数图象如图所示(越大表示注意力越集中).当时,图象是抛物线的一部分,当和时,图象是线段.(1)当时,求注意力指标数与时间的函数关系式.(2)一道数学综合题,需要讲解24,问老师能否安排,使学生听这道题时,注意力的指标数都不低于1.24.(10分)如图,为了估算河的宽度,在河对岸选定一个目标作为点A再在河的这边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.25.(12分)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?26.如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)将绕着点顺时针旋转后得到,请在图中画出;(2)若把线段旋转过程中所扫过的扇形图形围成一个圆锥的侧面,求该圆锥底面圆的半径(结果保留根号).

参考答案一、选择题(每题4分,共48分)1、C【分析】根据圆周角定理可得,再由三角形外角性质求出,解答即可.【详解】解:∵,,∴又∵,,,故选:.【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.2、D【分析】根据事件发生的可能性大小,逐一判断选项,即可.【详解】A、旭日东升是必然事件;B、刻舟求剑是不可能事件;C、拔苗助长是不可能事件;D、守株待兔是随机事件;故选:D.【点睛】本题主要考查随机事件的概念,掌握随机事件的定义,是解题的关键.3、C【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【详解】(1)当k>0时,一次函数y=kx-k

经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:C.【点睛】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.4、D【分析】将和点代入函数解析式即可判断A选项;利用可以判断B选项;根据顶点公式可判断C选项;根据抛物线的增减性质可判断D选项.【详解】A.将和代入,故A选项错误;B.当时,二次函数为,,函数图象与轴有一个交点,故B选项错误;C.函数图象的顶点坐标为,即,当时,不一定小于0,则顶点不一定在轴下方,故C选项错误;D.当时,抛物线开口向上,由C选项得,函数图象的对称轴为,所以时,随的增大而增大,故D选项正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、根的判别式以及抛物线与x轴的交点,掌握抛物线的对称轴、开口方向与系数之间的关系是解题的关键.5、B【分析】求滑下的距离,设出下降的高度,表示出水平高度,利用勾股定理即可求解.【详解】当时,,设此人下降的高度为米,过斜坡顶点向地面作垂线,在直角三角形中,由勾股定理得:,解得.故选:.【点睛】此题主要考查了坡角问题,理解坡比的意义,使用勾股定理,设未知数,列方程求解是解题关键.6、A【分析】作OE⊥AB于E,OF⊥AD于F,连接OA,如图,利用垂径定理和解直角三角形的知识分别在Rt△AOE和Rt△AOF中分别求出∠OAE和∠OAF的度数,进而可得∠EAF的度数,然后利用圆内接四边形的性质即可求得结果.【详解】解:作OE⊥AB于E,OF⊥AD于F,连接OA,如图,则AE=AB=2,AF=AD=2,在Rt△AOE中,∵cos∠OAE=,∴∠OAE=30°,在Rt△AOF中,∵cos∠OAF=,∴∠OAF=45°,∴∠EAF=30°+45°=75°,∵四边形ABCD为⊙O的内接四边形,∴∠C=180°﹣∠BAC=180°﹣75°=105°.故选:A.【点睛】本题考查了垂径定理、解直角三角形和圆内接四边形的性质等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.7、B【分析】根据位似变换的定义、相似三角形的性质列式计算即可.【详解】∵△ABC与△DEF是位似图形,相似比为2:3,

∴△ABC∽△DEF,

∴,即,

解得,DE=故选:B.【点睛】本题考查的是位似变换,掌握位似是相似的特殊形式,位似比等于相似比是解题的关键.8、C【分析】根据因式分解法,可得答案.【详解】解:,方程整理,得,x2-x=0

因式分解得,x(x-1)=0,

于是,得,x=0或x-1=0,

解得x1=0,x2=1,

故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9、A【解析】根据菱形的周长求出其边长,再根据菱形的性质得出对角线互相垂直,最后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】∵四边形是菱形,周长为28∴AB=7,AC⊥BD∴OH=故选:A【点睛】本题考查的是菱形的性质及直角三角形斜边上的中线等于斜边的一半,熟练掌握菱形的性质是关键.10、C【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法.故选C.【点睛】本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键.11、D【分析】由根的判别式△判断即可.【详解】解:△=b2-4ac=(-4)2-4×5=-4<0,方程没有实数根.故选择D.【点睛】本题考查了一元二次方程根与判别式的关系.12、C【分析】抛物线y=1x1绕原点旋转180°,即抛物线上的点(x,y)变为(-x,-y),代入可得抛物线方程,然后根据左加右减的规律即可得出结论.【详解】解:∵把抛物线y=1x1绕原点旋转180°,∴新抛物线解析式为:y=﹣1x1,∵再向右平移1个单位,向下平移1个单位,∴平移后抛物线的解析式为y=﹣1(x﹣1)1﹣1.故选:C.【点睛】本题考查了抛物线的平移变换规律,旋转变换规律,掌握抛物线的平移和旋转变换规律是解题的关键.二、填空题(每题4分,共24分)13、1【分析】当△=0时,方程有两个相等实数根.【详解】由题意得:△=b2-4ac=22-4m=0,则m=1.故答案为1.【点睛】本题考察了根的判别式与方程根的关系.14、x≥1且x≠1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,即可求解.【详解】解:根据二次根式有意义,分式有意义得:x-1≥0且x-1≠0,

解得:x≥1且x≠1.

故答案为:x≥1且x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,难度不大.15、1.【解析】解方程,分类讨论腰长,即可求解.【详解】解:x2﹣9x+18=0得x=3或6,分类讨论:当腰长为3时,三边为3、3、6此时不构成三角形,故舍,当腰长为6时,三边为3、6、6,此时周长为1.【点睛】本题考查了解一元二次方程和构成三角形的条件,属于简单题,分类讨论是解题关键.16、16【分析】先证明,然后再根据相似三角形的性质求解即可.【详解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本题答案为:16.【点睛】本题考查了相似三角形的应用,准确识图,熟练掌握和灵活运用相似三角形的判定定理与性质定理是解题的关键.17、3【分析】根据菱形面积公式求得.【详解】解:【点睛】本题主要考查了菱形的对角线互相垂直,菱形的面积公式.18、4【分析】由=可得,代入计算即可.【详解】解:∵=,∴,则故答案为:4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.三、解答题(共78分)19、y=x2﹣2x.【分析】根据抛物线经过原点可得c=0,根据对称轴公式求得b,即可求得其解析式.【详解】∵抛物线y=x2+bx+c经过原点,∴c=0,又∵抛物线y=x2+bx+c的对称轴为x=1,∴﹣=1,解得b=﹣2∴抛物线的解析式为y=x2﹣2x.【点睛】本题考查了待定系数法求二次函数的解析式,熟练掌握对称轴公式是解题的关键.20、(1)30°;(2)A(﹣6,);(3)【分析】(1)由题意直接根据等腰三角形的性质进行分析即可;(2)由题意过点A作AC⊥x轴于点C,由∠AOB=30°,解直角三角形可得出AC=2,再由锐角三角函数或勾股定理得出OC=6,即可求得A点的坐标;(3)根据题意设OB=AB=m,根据BA=BO可得出∠ABC=60°,由此可得出AC=m,由S△ABO=,列出关于m的方程,解方程求得m的值,进而AC和OC,结合反比例函数系数k的几何意义求得解析式.【详解】解(1)∵AB=BO,∠BAO=30°,∴∠AOB=∠BAO=30°.(2)过点A作AC⊥x轴,∵∴,∴A(﹣6,).(3)设OB=AB=,得出∠ABC=60°,在直角三角形ACB中得出AC=,∵S△ABO=,∴,∴,∴AC==,∴A(﹣3,).把A点坐标代入得反比例函数的解析式为.【点睛】本题考查反比例函数系数k的几何意义、特殊角的三角函数值,解题的关键是根据特殊角的三角函数值找出线段的长度.21、(1)证明见解析;(2)9.【分析】(1)首先根据直角三角形斜边中线的性质,得出,进而得出,然后由垂直的性质得出,最后由,即可得出;(2)首先由相似三角形的性质得出,然后由得出,进而即可得出的值.【详解】是直角三角形斜边上的中线.,而又由(1)知即..【点睛】此题主要考查直角三角形斜边中线性质以及相似三角形的判定与性质,熟练掌握,即可解题.22、(1)y=x2﹣4x+1;(2)①用含m的代数式表示线段PD的长为﹣m2+1m;②△PBC的面积最大时点P的坐标为(,﹣);(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2).【分析】(1)根据已知抛物线y=ax2+bx+1(a≠0)经过点A(1,0)和点B(1,0)代入即可求解;

(2)①先确定直线BC解析式,根据过点P作y轴的平行线交直线BC于点D,即可用含m的带上书表示出P和D的坐标进而求解;

②用含m的代数式表示出△PBC的面积,可得S是关于m的二次函数,即可求解;

(1)根据(1)中所得二次函数图象和对称轴先得点E的坐标即可写出点三个位置的点M的坐标.【详解】(1)∵抛物线y=ax2+bx+1(a≠0)经过点A(1,0)和点B(1,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+1;(2)①设P(m,m2﹣4m+1),将点B(1,0)、C(0,1)代入得直线BC解析式为yBC=﹣x+1.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+1),∴PD=(﹣m+1)﹣(m2﹣4m+1)=﹣m2+1m.答:用含m的代数式表示线段PD的长为﹣m2+1m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+1=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.

根据题意,点E(2,1),

∴EF=CF=2,

∴EC=2,

根据菱形的四条边相等,

∴ME=EC=2,∴M(2,1-2)或(2,1+2)

当EM=EF=2时,M(2,1)∴点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2).【点睛】本题考查了二次函数与方程、几何知识的综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.23、(1)y=+20(0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论