版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省灌南县数学九上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,是的直径,是的弦,若,则().A. B. C. D.2.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠33.在中,,则().A. B. C. D.4.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A. B. C. D.5.下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得6.如图,从一张腰长为,顶角为的等腰三角形铁皮中剪出一个最大的扇形,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A. B. C. D.7.下列一元二次方程中两根之和为﹣3的是()A.x2﹣3x+3=0 B.x2+3x+3=0 C.x2+3x﹣3=0 D.x2+6x﹣4=08.如图,一条公路的转弯处是一段圆弧,点是这段弧所在圆的圆心,,点是的中点,D是AB的中点,且,则这段弯路所在圆的半径为()A. B. C. D.9.反比例函数y=和一次函数y=kx-k在同一坐标系中的图象大致是()A. B. C. D.10.如图,在平面直角坐标系中,正方形ABCD顶点B(﹣1,﹣1),C在x轴正半轴上,A在第二象限双曲线y=﹣上,过D作DE∥x轴交双曲线于E,连接CE,则△CDE的面积为()A.3 B. C.4 D.11.下列二次根式中,不是最简二次根式的是()A. B. C. D.12.如图,在正方形中,点为边的中点,点在上,,过点作交于点.下列结论:①;②;③;④.正确的是(
).A.①② B.①③ C.①③④ D.③④二、填空题(每题4分,共24分)13.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.14.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.15.如图,抛物线y=﹣x2+mx+2m2(m>0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是_____________.16.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=______.17.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解_____.18.如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的度数为.三、解答题(共78分)19.(8分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?20.(8分)如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.21.(8分)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数的图象上,边CD在x轴上,点B在y轴上.已知.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标.(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.22.(10分)直线与轴交于点,与轴交于点,抛物线经过两点.(1)求这个二次函数的表达式;(2)若是直线上方抛物线上一点;①当的面积最大时,求点的坐标;②在①的条件下,点关于抛物线对称轴的对称点为,在直线上是否存在点,使得直线与直线的夹角是的两倍,若存在,直接写出点的坐标,若不存在,请说明理由.23.(10分)某商品市场销售抢手,其进价为每件80元,售价为每件130元,每个月可卖出500件;据市场调查,若每件商品的售价每上涨1元,则每个月少卖2件(每件售价不能高于240元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的涨价多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的涨价多少元时,每个月的利润恰为40000元?根据以上结论,请你直接写出x在什么范围时,每个月的利润不低于40000元?24.(10分)用列代数式或列方程(组)的方法,解决网络上流行的一个问题:法国新总统比法国第一夫人小24岁,美国新总统比美国第一夫人大24岁,法国新总统比美国新总统小32岁.求:美国第一夫人比法国第一夫人小多少岁?25.(12分)如图1,AB是⊙O的直径,过⊙O上一点C作直线l,AD⊥l于点D.(1)连接AC、BC,若∠DAC=∠BAC,求证:直线l是⊙O的切线;(1)将图1的直线l向上平移,使得直线l与⊙O交于C、E两点,连接AC、AE、BE,得到图1.若∠DAC=45°,AD=1cm,CE=4cm,求图1中阴影部分(弓形)的面积.26.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2.(1)求证:△ADC∽△APD;(2)求△APD的面积;(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断PMCN的值是否随着α的变化而变化?如果不变,请求出PM
参考答案一、选择题(每题4分,共48分)1、B【分析】根据AB是⊙O的直径得出∠ADB=90°,再求出∠A的度数,由圆周角定理即可推出∠BCD的度数.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故选B.【点睛】本题考查圆周角定理及其推论,熟练掌握圆周角定理是解题的关键.2、D【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件可得关于x的不等式组,解不等式组即可.【详解】由题意,要使在实数范围内有意义,必须且x≠3,故选D.3、A【分析】利用正弦函数的定义即可直接求解.【详解】sinA.故选:A.【点睛】本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4、C【分析】直接利用概率公式求解.【详解】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是.故选C.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.5、C【解析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【详解】A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.【点睛】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0≤p≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0;随机事件,发生的概率大于0并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.6、A【分析】根据等腰三角形的性质得到的长,再利用弧长公式计算出弧的长,设圆锥的底面圆半径为,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到.【详解】过作于,,,,弧的长,设圆锥的底面圆的半径为,则,解得.故选A.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7、C【分析】利用判别式的意义对A、B进行判断;根据根与系数的关系对C、D进行判断.【详解】A.△=(﹣3)2﹣4×3<0,方程没有实数解,所以A选项错误;B.△=32﹣4×3<0,方程没有实数解,所以B选项错误;C.方程x2+3x﹣3=0的两根之和为﹣3,所以C选项正确;D.方程x2+6x﹣4=0的两根之和为﹣6,所以D选项错误.故选:C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.也考查了判别式的意义.8、A【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【详解】解:,,在中,,设半径为得:,解得:,这段弯路的半径为故选A.【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.9、C【解析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选项比较,从而确定答案.【详解】(1)当k>0时,一次函数y=kx-k
经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选C.【点睛】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.10、B【分析】作辅助线,构建全等三角形:过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,证明△AHD≌△DMC≌△BGA,设A(x,﹣),结合点B的坐标表示:BG=AH=DM=﹣1﹣x,由HQ=CM,列方程,可得x的值,进而根据三角形面积公式可得结论.【详解】过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,设A(x,﹣),∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∴∠BAG=∠ADH=∠DCM,∴△AHD≌△DMC≌△BGA(AAS),∴BG=AH=DM=﹣1﹣x,∴AG=CM=DH=1﹣,∵AH+AQ=CM,∴1﹣=﹣﹣1﹣x,解得:x=﹣2,∴A(﹣2,2),CM=AG=DH=1﹣=3,∵BG=AH=DM=﹣1﹣x=1,∴点E的纵坐标为3,把y=3代入y=﹣得:x=﹣,∴E(﹣,3),∴EH=2﹣=,∴DE=DH﹣HE=3﹣=,∴S△CDE=DE•CM=××3=.故选:B.【点睛】本题主要考查反比例函数图象和性质与几何图形的综合,掌握“一线三垂直”模型是解题的关键.11、C【解析】根据最简二次根式的定义对各选项分析判断即可.【详解】解:A、是最简二次根式,不合题意,故本选项错误;B、是最简二次根式,不合题意,故本选项错误;C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;D、是最简二次根式,不合题意,故本选项错误;故选C.【点睛】本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.12、C【分析】连接.根据“HL”可证≌,利用全等三角形的对应边相等,可得,据此判断①;根据“”可证≌,可得,从而可得,据此判断②;由(2)知,可证,据此判断③;根据两角分别相等的两个三角形相似,可证∽∽,可得,从而可得,据此判断④.【详解】解:(1)连接.如图所示:
∵四边形ABCD是正方形,
∴∠ADC=90°,
∵FG⊥FC,
∴∠GFC=90°,
在Rt△CFG与Rt△CDG中,∴≌.∴...①正确.(2)由(1),垂直平分.∴∠EDC+∠2=90°,
∵∠1+∠EDC=90°,∴.∵四边形ABCD是正方形,
∴AD=DC=AB,∠DAE=∠CDG=90°,∴≌.∴.∵为边的中点,∴为边的中点.∴.∴②错误.(3)由(2),得.∴.③正确.(4)由(3),可得∽∽.∴∴.∴④正确.故答案为:C.【点睛】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定与性质、三角形中位线定理、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.二、填空题(每题4分,共24分)13、-2或1.【解析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.14、【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形.15、【分析】过点O作OH∥AC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据,可得出答案.【详解】解:过点O作OH∥AC交BE于点H,令y=x2+mx+2m2=0,∴x1=-m,x2=2m,∴A(-m,0)、B(2m,0),∴OA=m,OB=2m,AB=3m,∵D是OC的中点,∴CD=OD,∵OH∥AC,∴,∴OH=CE,∴,∴,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点问题,解题的关键是过点O作OH∥AC交BE于点H,此题有一定的难度.16、1【分析】由图可知,甲2秒跑了8米,可以求出甲的速度,根据乙100秒跑完了全程可知乙的速度,根据经过时间a秒,乙追上了甲,可列出方程解出a的值.【详解】解:由图象可得:甲的速度为8÷2=4米/秒,根据乙100秒跑完了全程可知乙的速度为:160÷100=1.6米/秒,经过a秒,乙追上甲,可列方程,∴,故答案为:1.【点睛】本题考查了行程问题中的数量关系的应用,追及问题在生活中的应用,认真分析函数图象的实际意义是解题的关键.17、x1=0,x4=﹣1.【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣1.故答案为:x1=0,x4=﹣1.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.18、160°.【分析】根据平行四边形的性质得∠ABC=∠ADC=60°,AD∥BC,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=30°,然后根据旋转的性质得∠BA′E′=∠BAE=30°,于是可得∠DA′E′=160°.【详解】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=60°,AD∥BC,∴∠ADA′+∠DA′B=180°,∴∠DA′B=180°﹣50°=130°,∵AE⊥BE,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=130°+30°=160°.故答案为160°.【点睛】本题考查旋转的性质,掌握旋转的性子,数形结合是本题的解题关键.三、解答题(共78分)19、(1);(2)当销售单价定为74元或72元时,每周销售利润最大,最大利润是5280元;【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;
(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;【详解】解:(1)依题意有:;
(2)依题意有:
W=(80-50-x)(10x+160)===-10(x-7)2+5290,
因为x为偶数,
所以当销售单价定为80-6=74元或80-8=72时,每周销售利润最大,最大利润是5280元;【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.20、(1)证明详见解析;(2).【解析】试题分析:(1)过点D作DF⊥BC于点F,根据角平分线的性质得到AD=DF.根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB.根据和勾股定理列方程即可得到结论.试题解析:(1)证明:过点D作DF⊥BC于点F,∵∠BAD=90°,BD平分∠ABC,∴AD=DF.∵AD是⊙D的半径,DF⊥BC,∴BC是⊙D的切线;(2)解:∵∠BAC=90°.∴AB与⊙D相切,∵BC是⊙D的切线,∴AB=FB.∵AB=5,BC=13,∴CF=8,AC=1.在Rt△DFC中,设DF=DE=r,则,解得:r=.∴CE=.考点:切线的判定;圆周角定理.21、(1)点A在该反比例函数的图像上,见解析;(2)Q的横坐标是;(3)见解析.【分析】(1)连接PC,过点P作轴于点H,由此可求得点P的坐标为(2,);即可求得反比例函数的解析式为,连接AC,过点B作于点C,求得点A的坐标,由此即可判定点A是否在该反比例函数的图象上;(2)过点Q作轴于点M,设,则,由此可得点Q的坐标为,根据反比例函数图象上点的性质可得,解方程球队的b值,即可求得点Q的横坐标;(3)连接AP,,,结合(1)中的条件,将正六边形ABCDEF先向右平移1个单位,再向上平移个单位(平移后的点B、C在反比例函数的图象上)或将正六边形ABCDEF向左平移2个单位(平移后的点E、F在反比例函数的图象上).【详解】解:(1)连接PC,过点P作轴于点H,在正六边形ABCDEF中,点B在y轴上和都是含有角的直角三角形,,点P的坐标为反比例函数的表达式为连接AC,过点B作于点C,,点A的坐标为当时,所以点A在该反比例函数的图像上(2)过点Q作轴于点M六边形ABCDEF是正六边形,设,则点Q的坐标为解得,点Q的横坐标是(3)连接AP,,平移过程:将正六边形ABCDEF先向右平移1个单位,再向上平移个单位,或将正六边形ABCDEF向左平移2个单位【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标相结合是解决问题的关系.22、(1);(2)①;存在,或【分析】(1)先求得点的坐标,再代入求得b、c的值,即可得二次函数的表达式;(2)作交于点,,,,根据二次函数性质可求得.(3)求出,再根据直线与直线的夹角是的两倍,得出线段的关系,用两点间距离公式求出坐标.【详解】解:如图(1),;(2)作交于点.①设,,则:则时,最大,;(2),则,设,①若:则,∴;②若则,,作于,,与重合,关于对称,∴【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,三角形面积的巧妙求法,以及对称点之间的关系.23、(1)y=﹣2x2+400x+25000,0<x≤1,且x为正整数;(2)件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元;(3)每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤1,且x为正整数时,每个月的利润不低于40000元【分析】(1)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元,每件商品的售价每上涨1元,则每个月少卖2件,根据月利润=单件利润×数量,则可以得到月销售利润y的函数关系式;(2)由月利润的函数表达式y=﹣2x2+400x+25000,配成顶点式即可;(3)当月利润y=40000时,求出x的值,结合(1)中的取值范围即可得.【详解】解:(1)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元,由题意得:y=(130﹣80+x)(500﹣2x)=﹣2x2+400x+25000∵每件售价不能高于240元∴130+x≤240∴x≤1∴y与x的函数关系式为y=﹣2x2+400x+25000,自变量x的取值范围为0<x≤1,且x为正整数;故答案为:y=﹣2x2+400x+25000;0<x≤1.(2)∵y=﹣2x2+400x+25000=﹣2(x﹣100)2+45000∴当x=100时,y有最大值45000元;∴每件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元,故答案为:每件商品的涨价100元时,月利润最大是45000元;(3)令y=40000,得:﹣2x2+400x+25000=40000解得:x1=50,x2=150∵0<x≤1∴x=50,即每件商品的涨价为50元时,每个月的利润恰为40000元,由二次函数的性质及问题的实际意义,可知当50≤x≤1,且x为正整数时,每个月的利润不低于40000元.∴每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤1,且x为正整数时,每个月的利润不低于40000元,故答案为:每件商品的涨价为50元;50≤x≤1;【点睛】本题考查了二次函数的实际应用,方案设计类营销问题,二次函数表达式的求解,二次函数顶点式求最值问题,由函数值求自变量的值,掌握二次函数的实际应用是解题的关键.24、美国第一夫人比法国第一夫人小16岁.【分析】将法国新总统设为x岁,然后用含x的代数式分别表示出法国第一夫人,美国新总统,美国第一夫人,然后用法国第一夫人减去美国第一夫人的年龄即可得出答案.【详解】设法国新总统x岁,则法国第一夫人:(x+24)岁,美国新总统:(x+32)岁,美国第一夫人:(x+32﹣24)=(x+8)岁,故美国第一夫人比法国第一夫人小:(x+24)﹣(x+8)=16(岁).故美国第一夫人比法国第一夫人小16岁.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物业管理服务合同有附属设施2篇
- 2024年度汽车抵押贷款居间服务合同范本
- 2024年度互联网金融:投资理财与风险控制合同
- 2024年度彩钢瓦施工质量控制系统开发合同
- 医院手术室7s管理
- 2024年度沧州图书馆租赁合同
- 2024年度汽车抵押贷款合同2篇
- 2024年度施工合同的建设标准要求
- 非经营性固定资产管理制度-模板范文
- 2024年度电商一件代发合同-违约责任与争议解决
- 基于层次分析法的建筑工程项目成本管理-
- 汶川大地震地震报告
- 《物资编码基础知识》课件
- 食品检验检测培训课件
- 骨科护士专科知识培训课件
- 多余物预防控制
- 2024年医院中医内科带教教案
- 学校食堂厨房规范化操作程序
- 第5课互联网接入课件2023-2024学年浙教版(2023)初中信息技术七年级上册
- 审计学(第5版)课后习题答案 第七章 审计抽样练习题
- 医院检验科实验室生物安全管理手册
评论
0/150
提交评论