2022年湖南省湘西土家族苗族自治州名校数学九年级第一学期期末检测模拟试题含解析_第1页
2022年湖南省湘西土家族苗族自治州名校数学九年级第一学期期末检测模拟试题含解析_第2页
2022年湖南省湘西土家族苗族自治州名校数学九年级第一学期期末检测模拟试题含解析_第3页
2022年湖南省湘西土家族苗族自治州名校数学九年级第一学期期末检测模拟试题含解析_第4页
2022年湖南省湘西土家族苗族自治州名校数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,线段是⊙的直径,弦,垂足为,点是上任意一点,,则的值为()A. B. C. D.2.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米3.如图是二次函数的部分图象,则的解的情况为()A.有唯一解 B.有两个解 C.无解 D.无法确定4.把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为()A. B.C. D.5.如图所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(-3,0) B.(-2,0) C.(-4,0)或(-2,0) D.(-4,0)6.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为()A.900个 B.1080个 C.1260个 D.1800个7.两个相似多边形的面积比是9∶16,其中小多边形的周长为36cm,则较大多边形的周长为)A.48cm B.54cm C.56cm D.64cm8.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.9.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.2410.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A.方差 B.众数 C.平均数 D.中位数11.已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是()A.4cm B.8cm C.16cm D.32cm12.如图是由几个大小相同的小正方体组成的立体图形的俯视图,则这个立体图形可能是下图中的()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,∠C=90°,AC=3,若cosA=,则BC的长为________.14.如图,是⊙O上的点,若,则___________度.15.如图,一段抛物线记为,它与轴的交点为,顶点为;将绕点旋转180°得到,交轴于点为,顶点为;将绕点旋转180°得到,交轴于点为,顶点为;……,如此进行下去,直至到,顶点为,则顶点的坐标为_________.16.把多项式分解因式的结果是.17.若锐角满足,则__________.18.如图,△ABC是⊙O的内接三角形,∠A=120°,过点C的圆的切线交BO于点P,则∠P的度数为_____.三、解答题(共78分)19.(8分)已知关于的方程的一个实数根是3,求另一根及的值.20.(8分)对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和,,所以.(1)计算:,;(2)小明在计算时发现几个结果都为正整数,小明猜想所有的均为正整数,你觉得这个猜想正确吗?请判断并说明理由;(3)若,都是“相异数”,其中,(,,、都是正整数),当时,求的最大值.21.(8分)画出如图几何体的主视图、左视图、俯视图.22.(10分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.(1)求证:BE=EC(2)填空:①若∠B=30°,AC=2,则DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.23.(10分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+1.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?24.(10分)小明和小亮两人一起玩投掷一个普通正方体骰子的游戏.(1)说出游戏中必然事件,不可能事件和随机事件各一个;(2)如果两个骰子上的点数之积为奇数,小明胜,否则小亮胜,你认为这个游戏公平吗?如果不公平,谁获胜的可能性较大?请说明理由.请你为他们设计一个公平的游戏规则.25.(12分)如图,在△ABC中,AB=AC=13,BC=10,求tanB的值.26.如图,,平分,过点作交于,连接交于,若,,求,的长.

参考答案一、选择题(每题4分,共48分)1、D【分析】只要证明∠CMD=△COA,求出cos∠COA即可.【详解】如图1中,连接OC,OM.设OC=r,∴,∴r=5,∵AB⊥CD,AB是直径,∴,∴∠AOC=∠COM,∵∠CMD=∠COM,∴∠CMD=∠COA,∴cos∠CMD=cos∠COA=.【点睛】本题考查了圆周角定理,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会转化的思想思考问题.2、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.3、C【分析】根据图象可知抛物线顶点的纵坐标为-3,把方程转化为,利用数形结合求解即可.【详解】根据图象可知抛物线顶点的纵坐标为-3,把转化为抛物线开口向下有最小值为-3∴(-3)>(-4)即方程与抛物线没有交点.即方程无解.故选C.【点睛】本题考查了数形结合的思想,由题意知道抛物线的最小值为-3是解题的关键.4、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为:.故选:C.【点睛】此题考查了抛物线的平移,属于基本题型,熟知抛物线的平移规律是解答的关键.5、A【解析】此题根据切线的性质以及勾股定理,把要求PQ的最小值转化为求AP的最小值,再根据垂线段最短的性质进行分析求解.【详解】连接AQ,AP.根据切线的性质定理,得AQ⊥PQ;要使PQ最小,只需AP最小,则根据垂线段最短,则作AP⊥x轴于P,即为所求作的点P;此时P点的坐标是(-3,0).故选A.【点睛】此题应先将问题进行转化,再根据垂线段最短的性质进行分析.6、C【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【详解】估计本周全班同学各家总共丢弃塑料袋的数量为(个).【点睛】本题考查了用样本估计总体的问题,掌握算术平均数的公式是解题的关键.7、A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2.大多边形的周长为2cm.故选A.考点:相似多边形的性质.8、B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.9、A【分析】先利用因式分解法解方程得到x1=3,x2=4,再根据菱形的性质可确定边AB的长是4,然后计算菱形的周长.【详解】(x﹣3)(x﹣4)=0,x﹣3=0或x﹣4=0,所以x1=3,x2=4,∵菱形ABCD的一条对角线长为6,∴边AB的长是4,∴菱形ABCD的周长为1.故选A.【点睛】本题考查菱形的性质和解一元二次方程-因式分解法,解题的关键是掌握菱形的性质和解一元二次方程-因式分解法.10、D【解析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11、C【分析】连接CE,先由三角形内角和定理求出∠B的度数,再由线段垂直平分线的性质及三角形外角的性质求出∠CEA的度数,由直角三角形中30°所对的直角边是斜边的一半即可解答.【详解】解:连接CE,∵Rt△ABC中,∠A=90°,∠BCA=75°,∴∠B=90°﹣∠BCA=90°﹣75°=15°,∵DE垂直平分BC,∴BE=CE,∴∠BCE=∠B=15°,∴∠AEC=∠BCE+∠B=30°,∵Rt△AEC中,AC=8cm,∴CE=2AC=16cm,∵BE=CE,∴BE=16cm.故选:C.【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质、三角形外角的性质和直角三角形的性质,掌握垂直平分线的性质、等边对等角、三角形外角的性质和30°所对的直角边是斜边的一半是解决此题的关键.12、D【分析】由俯视图判断出组合的正方体的几何体的列数即可.【详解】根据给出的俯视图,这个立体图形的第一排至少有3个正方体,第二排有1个正方体.故选:D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.二、填空题(每题4分,共24分)13、1【分析】由题意先根据∠C=90°,AC=3,cos∠A=,得到AB的长,再根据勾股定理,即可得到BC的长.【详解】解:∵△ABC中,∠C=90°,AC=3,cos∠A=,∴,∴AB=5,∴BC==1.故此空填1.【点睛】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA,以此并结合勾股定理分析求解.14、130°.【分析】在优弧AB上取点D,连接AD,BD,根据圆周角定理先求出∠ADB的度数,再利用圆内接四边形对角互补进行求解即可.【详解】在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=50°,∴∠ACB=180°﹣∠ADB=130°.故答案为130°.【点睛】本题考查了圆周角定理,圆内接四边形对角互补的性质,正确添加辅助线,熟练应用相关知识是解题的关键.15、(9.5,-0.25)【详解】由抛物线可求;又抛物线某是依次绕系列点旋转180°,根据中心对称的特征得:,.根据以上可知抛物线顶点的规律为(的整数);根据规律可计算点的横坐标为,点的纵坐标为.∴顶点的坐标为故答案为:(9.5,-0.25)【点睛】本题主要是以二次函数的图象及其性质为基础,再根据轴对称和中心对称找顶点坐标的规律.关键是抛物线顶点到坐标轴的距离的变化,再根据规律计算.16、m(4m+n)(4m﹣n).【解析】试题分析:原式==m(4m+n)(4m﹣n).故答案为m(4m+n)(4m﹣n).考点:提公因式法与公式法的综合运用.17、【分析】根据特殊角三角函数值,可得答案.【详解】解:由∠A为锐角,且,∠A=60°,

故答案为:60°.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18、30°【分析】连接OC、CD,由切线的性质得出∠OCP=90°,由圆内接四边形的性质得出∠ODC=180°−∠A=60°,由等腰三角形的性质得出∠OCD=∠ODC=60°,求出∠DOC=60°,由直角三角形的性质即可得出结果.【详解】如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=120°,∴∠ODC=180°−∠A=60°,∵OC=OD,∴∠OCD=∠ODC=60°,∴∠DOC=180°−2×60°=60°,∴∠P=90°−∠DOC=30°;故填:30°.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.三、解答题(共78分)19、,另一根为4.【分析】把代入方程求出m的值,再把代入原方程即可求解.【详解】解:把代入方程,得,解得,把代入原方程,得,解得,.所以另一根为4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知方程的解的定义及方程的解法.20、(1)10;12.(2)猜想正确.理由见解析;(3).【分析】(1)根据“相异数”的定义即可求解;(2)设的三个数位数字分别为,,,根据“相异数”的定义列出即可求解;(3)根据,都是“相异数”,得到,,根据求出x,y的值即可求解.【详解】(1);.(2)猜想正确.设的三个数位数字分别为,,,即,.因为,,均为正整数,所以任意为正整数.(3)∵,都是“相异数”,∴;.∵,∴,∴,∵,,且,都是正整数,∴或或或,∵是“相异数”,∴;∵是“相异数”,∴,∴满足条件的有,或,或,∴或或,∴的最大值为.【点睛】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.21、如图所示,见解析.【分析】根据长对正、高平齐、宽相等来画三视图即可.【详解】如图所示:.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.22、(1)见解析;(2)①3;②1.【分析】(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【详解】(1)证明:连接DO.∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案为3;②当∠B=1°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案为1.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23、门票价格应是20元/人.【分析】根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格.【详解】根据确保每周4万元的门票收入,得xy=40000即x(-500x+1)=40000x2-24x+80=0解得x1=20,x2=4把x1=20,x2=4分别代入y=-500x+1中得y1=2000,y2=10000因为控制参观人数,所以取x=20,答:门票价格应是20元/人.【点睛】考查了一元二次方程的应用,解题的关键是能够根据题意列出方程,难度不大.24、(1)详见解析;(2)不公平,规则详见解析.【分析】(1)根据题意说出即可;(2)游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等,算出该情况下两人获胜的概率.【详解】(1)必然事件是两次投出的朝上的数字之和大于1;不可能事件是两次投出的朝上的数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论