版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图所示是一个运算程序,若输入的值为﹣2,则输出的结果为()A.3 B.5 C.7 D.92.一副三角板如图放置,它们的直角顶点、分别在另一个三角板的斜边上,且,则的度数为()A. B. C. D.3.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6 B.8C.10 D.124.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x,则可以列方程为()A. B.C. D.5.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A. B. C. D.6.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大7.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连结AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是()A.50° B.65° C.100° D.130°8.如图,在平面直角坐标系中,在轴上,,点的坐标为,绕点逆时针旋转,得到,若点的对应点恰好落在反比例函数的图像上,则的值为()A.4. B.3.5 C.3. D.2.59.两三角形的相似比是2:3,则其面积之比是()A.: B.2:3 C.4:9 D.8:2710.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120° D.180°11.下列函数关系式中,是的反比例函数的是()A. B. C. D.12.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是()A.10m B.10m C.15m D.5m二、填空题(每题4分,共24分)13.设、是一元二次方程的两实数根,则的值为_________14.如图,四边形是半圆的内接四边形,是直径,.若,则的度数为______.15.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On与直线l相切.设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=________.16.在△ABC中,若AB=5,BC=13,AD是BC边上的高,AD=4,则tanC=_____.17.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x人,则关于x的方程为_________.18.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+5=_____.三、解答题(共78分)19.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.20.(8分)如图,在平面直角坐标系中有点A(1,5),B(2,2),将线段AB绕P点逆时针旋转90°得到线段CD,A和C对应,B和D对应.(1)若P为AB中点,画出线段CD,保留作图痕迹;(2)若D(6,2),则P点的坐标为,C点坐标为.(3)若C为直线上的动点,则P点横、纵坐标之间的关系为.21.(8分)如图,是⊙的直径,,是的中点,连接并延长到点,使.连接交⊙于点,连接.(1)求证:直线是⊙的切线;(2)若,求⊙的半径.22.(10分)如图,是的直径,弦于点;点是延长线上一点,,.(1)求证:是的切线;(2)取的中点,连接,若的半径为2,求的长.23.(10分)在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”.如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为1.(1)点在函数的图象上,点的“坐标和”是;(2)求直线的“智慧数”;(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式.24.(10分)如图,大圆的弦AB、AC分别切小圆于点M、N.(1)求证:AB=AC;(2)若AB=8,求圆环的面积.25.(12分)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).26.如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:(1)在图1中作出圆心O;(2)在图2中过点B作BF∥AC.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据图表列出算式,然后把x=-2代入算式进行计算即可得解.【详解】解:把x=﹣2代入得:1﹣2×(﹣2)=1+4=1.故选:B.【点睛】此题考查代数式求值,解题关键在于掌握运算法则.2、C【分析】根据平行线的性质,可得∠FAC=∠C=45°,然后根据三角形外角的性质,即可求出∠1.【详解】解:由三角板可知:∠F=30°,∠C=45°∵∴∠FAC=∠C=45°∴∠1=∠FAC+∠F=75°故选:C.【点睛】此题考查的是平行线的性质和三角形外角的性质,掌握两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角之和是解决此题的关键.3、D【解析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.4、D【分析】根据题意分别用含x式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为x,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2,根据题意可列方程为.故选:D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.5、D【解析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.6、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为==188,方差为S2==;换人后6名队员身高的平均数为==187,方差为S2==∵188>187,>,∴平均数变小,方差变小,故选A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7、C【分析】直接根据题意得出AB=AC,进而得出∠A=50°,再利用圆周角定理得出∠BOC=100°.【详解】解:由题意可得:AB=AC,
∵∠ABC=65°,
∴∠ACB=65°,
∴∠A=50°,
∴∠BOC=100°,
故选:C.【点睛】本题考查圆心角、弧、弦的关系.8、C【分析】先通过条件算出O’坐标,代入反比例函数求出k即可.【详解】由题干可知,B点坐标为(1,0),旋转90°后,可知B’坐标为(3,2),O’坐标为(3,1).∵双曲线经过O’,∴1=,解得k=3.故选C.【点睛】本题考查反比例函数图象与性质,关键在于坐标平面内的图形变换找出关键点坐标.9、C【解析】根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵两三角形的相似比是2:3,∴其面积之比是4:9,故选C.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键.10、C【详解】解:设母线长为R,底面半径为r,可得底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,根据圆锥侧面积恰好等于底面积的3倍可得3πr2=πrR,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,即.可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C.考点:有关扇形和圆锥的相关计算11、C【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【点睛】本题考查的是反比例函数的定义:形如的式子,其中k≠0.12、A【解析】试题分析:河堤横断面迎水坡AB的坡比是,即,∴∠BAC=30°,∴AB=2BC=2×5=10,故选A.考点:解直角三角形二、填空题(每题4分,共24分)13、27【详解】解:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.故答案为27.【点睛】此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.14、50【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∵DC=CB∴∵AB是直径∴∴故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键.15、1【解析】分别作O1A⊥l,O2B⊥l,O3C⊥l,如图,
∵半圆O1,半圆O2,…,半圆On与直线L相切,
∴O1A=r1,O2B=r2,O3C=r3,
∵∠AOO1=30°,
∴OO1=2O1A=2r1=2,
在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,
∴r2=3,
在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,
∴r3=9=32,
同理可得r4=27=33,
所以r2018=1.
故答案为1.点睛:找规律题需要记忆常见数列1,2,3,4……n1,3,5,7……2n-12,4,6,8……2n2,4,8,16,32……1,4,9,16,25……2,6,12,20……n(n+1)一般题目中的数列是利用常见数列变形而来,其中后一项比前一项多一个常数,是等差数列,列举找规律.后一项是前一项的固定倍数,则是等比数列,列举找规律.16、或【分析】先根据勾股定理求出BD的长,再分高AD在△ABC内部和外部两种情况画出图形求出CD的长,然后利用正切的定义求解即可.【详解】解:在直角△ABD中,由勾股定理得:BD==3,若高AD在△ABC内部,如图1,则CD=BC﹣BD=10,∴tanC=;若高AD在△ABC外部,如图2,则CD=BC+BD=16,∴tanC=.故答案为:或.【点睛】本题考查了勾股定理和锐角三角函数的定义,属于常见题型,正确画出图形、全面分类、熟练掌握基本知识是解答的关键.17、【分析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,依题意列方程:1+x+x(1+x)=1.【详解】整理得,.
故答案为:.【点睛】本题考查了由实际问题抽象出一元二次方程.关键是得到两轮传染数量关系,从而可列方程求解.18、1【分析】利用抛物线与x轴的交点问题得到m2﹣m﹣1=0,则m2﹣m=1,然后利用整体代入的方法计算m2﹣m+5的值.【详解】∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=1.故答案为:1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数(是常数,)与轴的交点坐标问题转化为解关于的一元二次方程.三、解答题(共78分)19、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.20、(1)见解析;(2)(4,4),(3,1);(3).【分析】(1)根据题意作线段CD即可;(2)根据题意画出图形即可解决问题;(3)因为点C的运动轨迹是直线,所以点P的运动轨迹也是直线,找到当C坐标为(0,0)时,P'的坐标,利用待定系数法即可求出关系式.【详解】(1)如图所示,线段CD即为所求,(2)如图所示,P点坐标为(4,4),C点坐标为(3,1),故答案为:(4,4),(3,1).(3)如图所示,∵点C的运动轨迹是直线,∴点P的运动轨迹也是直线,当C点坐标为(3,1)时,P点坐标为(4,4),当C点坐标为(0,0)时,P'的坐标为(3,2),设直线PP'的解析式为,则有,解得,∴P点横、纵坐标之间的关系为,故答案为:.【点睛】本题考查网格作图和一次函数的解析式,熟练掌握旋转变换的特征是解题的关键.21、(1)见解析;(2).【分析】(1)连OC,根据“,AB是⊙O的直径”可得CO⊥AB,进而证明△OEC≌△BEF(SAS)即可得到∠FBE=∠COE=90°,从而证明直线是⊙的切线;(2)由(1)可设⊙O的半径为r,则AB=2r,BF=r,在Rt∆ABF运用沟谷定理即可得.【详解】(1)连OC.∵,AB是⊙O的直径∴CO⊥AB∵E是OB的中点∴OE=BE又∵CE=EF,∠OEC=∠BEF∴△OEC≌△BEF(SAS)∴∠FBE=∠COE=90°即AB⊥BF∴BF是⊙O的切线.(2)由(1)知=90°设⊙O的半径为r,则AB=2r,BF=r在Rt∆ABF中,由勾股定理得;,即,解得:r=∴⊙O的半径为.【点睛】本题考查了切线的证明及圆中的计算问题,熟知切线的证明方法及题中的线段角度之间的关系是解题的关键.22、(1)见解析(2)【分析】(1)连接OE,OF,由垂径定理和圆周角定理得到∠DOF=∠DOE.而∠DOE=2∠A,得出∠DOF=2∠A,证出∠OFD=90°.即可得出结论;(2)连接OM,由垂径定理和勾股定理进行计算即可.【详解】(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴MB=OB=1,OM==.∵∠DOF=60°,∴∠MOF=90°.∴MF=.【点睛】本题考查了切线的判定、圆周角定理、勾股定理、直角三角形的性质、垂径定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.23、(1)4;(2)直线“智慧数”等于;(3)抛物线的“智慧数”是;(4)抛物线的解析式为或【分析】(1)先求出点N的坐标,然后根据“坐标和”的定义计算即可;(2)求出,然后根据一次函数的增减性和“智慧数”的定义计算即可;(3)先求出抛物线的顶点坐标,即可列出关于b和c的等式,然后求出,然后利用二次函数求出y+x的最小值即可得出结论;(4)根据题意可设二次函数为,坐标和为,即可求出与x的二次函数关系式,求出与x的二次函数图象的对称轴,先根据已知条件求出m的取值范围,然后根据与对称轴的相对位置分类讨论,分别求出的最小值列出方程即可求出结论.【详解】解:(1)将y=2代入到解得x=2∴点N的坐标为(2,2)∴点的“坐标和”是2+2=4故答案为:4;(2),∵,∴当时,最小,即直线,“智慧数”等于(3)抛物线的顶点坐标为,∴,即∵,∴的最小值是∴抛物线的“智慧数”是;(4)∵二次函数的图象的顶点在直线上,∴设二次函数为,坐标和为对称轴∵∴①当时,即时,“坐标和”随的增大而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版承包工地食堂餐厨垃圾处理合同模板3篇
- 2024蔬菜加工产品销售合作协议3篇
- 2024年股权转让合同标的及属性详细描述
- 2024年版物业托管服务协议版B版
- 二零二五版离婚协议书起草与审核合同2篇
- 2024版房屋赠与合同协议书大全
- 天津中德应用技术大学《教育技术与传播》2023-2024学年第一学期期末试卷
- 二零二五版家政服务+家庭健康促进合同3篇
- 太原幼儿师范高等专科学校《西医外科学医学免疫学与病原生物学》2023-2024学年第一学期期末试卷
- 二零二五年特殊用途变压器安装与性能测试合同2篇
- 《浸没式液冷冷却液选型要求》
- 迪士尼乐园总体规划
- 2024年江苏省苏州市中考数学试卷含答案
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 介绍蝴蝶兰课件
- 大学计算机基础(第2版) 课件 第1章 计算机概述
- 数字化年终述职报告
- 2024年职工普法教育宣讲培训课件
- 安保服务评分标准
- T-SDLPA 0001-2024 研究型病房建设和配置标准
- (人教PEP2024版)英语一年级上册Unit 1 教学课件(新教材)
评论
0/150
提交评论