2024年四川省自贡市中考数学试卷答案_第1页
2024年四川省自贡市中考数学试卷答案_第2页
2024年四川省自贡市中考数学试卷答案_第3页
2024年四川省自贡市中考数学试卷答案_第4页
2024年四川省自贡市中考数学试卷答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年四川省自贡市中考数学试卷一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)在0,﹣2,,π四个数中,最大的数是()A.﹣2 B.0 C.π D.2.(4分)据统计,今年“五一”小长假期间,近70000人次游览了自贡中华彩灯大世界.70000用科学记数法表示为()A.0.7×105 B.7×104 C.7×105 D.0.7×1043.(4分)如图,以点A为圆心,适当的长为半径画弧,交∠A两边于点M,N,再分别以M、N为圆心,AM的长为半径画弧,两弧交于点B,连接MB,NB.若∠A=40°,则∠MBN=()A.40° B.50° C.60° D.140°4.(4分)下列几何体中,俯视图与主视图形状相同的是()A. B. C. D.5.(4分)学校群文阅读活动中,某学习小组五名同学阅读课外书的本数分别为3,5,7,4,5.这组数据的中位数和众数分别是()A.3,4 B.4,4 C.4,5 D.5,56.(4分)如图,在平面直角坐标系中,D(4,﹣2),将Rt△OCD绕点O逆时针旋转90°到△OAB位置.则点B坐标为()A.(2,4) B.(4,2) C.(﹣4,﹣2) D.(﹣2,4)7.(4分)我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是()A.是轴对称图形 B.是中心对称图形 C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形也不是中心对称图形8.(4分)关于x的方程x2+mx﹣2=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根9.(4分)一次函数y=x﹣2n+4,二次函数y=x2+(n﹣1)x﹣3,反比例函数在同一直角坐标系中图象如图所示,则n的取值范围是()A.n>﹣1 B.n>2 C.﹣1<n<1 D.1<n<210.(4分)如图,在▱ABCD中,∠B=60°,AB=6cm,BC=12cm.点P从点A出发,以1cm/s的速度沿A→D运动,同时点Q从点C出发,以3cm/s的速度沿C→B→C→…往复运动,当点P到达端点D时,点Q随之停止运动.在此运动过程中,线段PQ=CD出现的次数是()A.3 B.4 C.5 D.611.(4分)如图,等边△ABC钢架的立柱CD⊥AB于点D,AB长12m.现将钢架立柱缩短成DE,∠BED=60°.则新钢架减少用钢()A.(24﹣12)m B.(24﹣8)m C.(24﹣6)m D.(24﹣4)m12.(4分)如图,在矩形ABCD中,AF平分∠BAC,将矩形沿直线EF折叠,使点A,B分别落在边AD、BC上的点A′,B′处,EF,A′F分别交AC于点G,H.若GH=2,HC=8,则BF的长为()A. B. C. D.5二、填空题(共6个小题,每小题4分,共24分)13.(4分)分解因式:x2﹣3x=.14.(4分)计算:.15.(4分)凸七边形的内角和是度.16.(4分)一次函数y=(3m+1)x﹣2的值随x的增大而增大,请写出一个满足条件的m的值.17.(4分)龚扇是自贡“小三绝”之一,为弘扬民族传统文化,某校手工兴趣小组将一个废弃的大纸杯侧面剪开直接当作扇面,制作了一个龚扇模型(如图),扇形外侧两竹条AB,AC夹角为120°,AB长30cm,扇面的BD边长为18cm,则扇面面积为cm2(结果保留π).18.(4分)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE=6.6m,OE=1.4m,OB=6m,OC=5m,OD=3m,班长买来可切断的围栏16m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是m2.三、解答题(共8个题,共78分)19.(8分)计算:(tan45°﹣2)0+|2﹣3|.20.(8分)如图,在△ABC中,DE∥BC,∠EDF=∠C.(1)求证:∠BDF=∠A;(2)若∠A=45°,DF平分∠BDE,请直接写出△ABC的形状.21.(8分)为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.22.(8分)在Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点分别为D,E,F.(1)图1中三组相等的线段分别是CE=CF,AF=,BD=;若AC=3,BC=4,则⊙O半径长为;(2)如图2,延长AC到点M,使AM=AB,过点M作MN⊥AB于点N.求证:MN是⊙O的切线.23.(10分)某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如表),并绘制出不完整的条形统计图(如图).学生体质健康统计表成绩频数百分比不及格3a及格b20%良好45c优秀3232%(1)如表中a=,b=,c=;(2)请补全如图的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会,请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.24.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y的图象交于A(﹣6,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)P是直线x=﹣2上的一个动点,△PAB的面积为21,求点P坐标;(3)点Q在反比例函数y位于第四象限的图象上,△QAB的面积为21,请直接写出Q点坐标.25.(12分)为测量水平操场上旗杆的高度,九(2)班各学习小组运用了多种测量方法.(1)如图1,小张在测量时发现,自己在操场上的影长EF恰好等于自己的身高DE.此时,小组同学测得旗杆AB的影长BC为11.3m,据此可得旗杆高度为m;(2)如图2,小李站在操场上E点处,前面水平放置镜面C,并通过镜面观测到旗杆顶部A.小组同学测得小李的眼睛距地面高度DE=1.5m,小李到镜面距离EC=2m,镜面到旗杆的距离CB=16m.求旗杆高度;(3)小王所在小组采用图3的方法测量,结果误差较大.在更新测量工具,优化测量方法后,测量精度明显提高,研学旅行时,他们利用自制工具,成功测量了江姐故里广场雕塑的高度.方法如下:如图4,在透明的塑料软管内注入适量的水,利用连通器原理,保持管内水面M,N两点始终处于同一水平线上.如图5,在支架上端P处,用细线系小重物Q,标高线PQ始终垂直于水平地面.如图6,在江姐故里广场上E点处,同学们用注水管确定与雕塑底部B处于同一水平线的D,G两点,并标记观测视线DA与标高线交点C,测得标高CG=1.8m,DG=1.5m.将观测点D后移24m到D′处.采用同样方法,测得C′G′=1.2m,D′G′=2m.求雕塑高度(结果精确到1m).26.(14分)如图,抛物线与x轴交于A(﹣1,0),B(4,0)两点,顶点为P.(1)求抛物线的解析式及P点坐标;(2)抛物线交y轴于点C,经过点A,B,C的圆与y轴的另一个交点为D,求线段CD的长;(3)过点P的直线y=kx+n分别与抛物线、直线x=﹣1交于x轴下方的点M,N,直线NB交抛物线对称轴于点E,点P关于E的对称点为Q,MH⊥x轴于点H.请判断点H与直线NQ的位置关系,并证明你的结论.

2024年四川省自贡市中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)在0,﹣2,,π四个数中,最大的数是()A.﹣2 B.0 C.π D.【答案】C【解答】解:∵﹣20<π,∴最大的数为π,故选:C.2.(4分)据统计,今年“五一”小长假期间,近70000人次游览了自贡中华彩灯大世界.70000用科学记数法表示为()A.0.7×105 B.7×104 C.7×105 D.0.7×104【答案】B【解答】解:70000用科学记数法表示为7×104,故选:B.3.(4分)如图,以点A为圆心,适当的长为半径画弧,交∠A两边于点M,N,再分别以M、N为圆心,AM的长为半径画弧,两弧交于点B,连接MB,NB.若∠A=40°,则∠MBN=()A.40° B.50° C.60° D.140°【答案】A【解答】解:由作图可知AM=AN=MB=NB,∴四边形AMBN是菱形,∴∠MBN=∠A=40°.故选:A.4.(4分)下列几何体中,俯视图与主视图形状相同的是()A. B. C. D.【答案】C【解答】解:圆锥的主视图是等腰三角形,俯视图是带圆心的圆,故选项A不符合题意;圆柱的主视图是矩形,俯视图是圆,故B不符合题意正方体的主视图和俯视图都是正方形,故C符合题意;棱台的主视图是梯形,俯视图是正方形,故D不符合题意;故选:C.5.(4分)学校群文阅读活动中,某学习小组五名同学阅读课外书的本数分别为3,5,7,4,5.这组数据的中位数和众数分别是()A.3,4 B.4,4 C.4,5 D.5,5【答案】D【解答】解:将数据从小到大排列为:3,4,5,5,7,∴中位数是5,众数是5,故选:D.6.(4分)如图,在平面直角坐标系中,D(4,﹣2),将Rt△OCD绕点O逆时针旋转90°到△OAB位置.则点B坐标为()A.(2,4) B.(4,2) C.(﹣4,﹣2) D.(﹣2,4)【答案】A【解答】解:∵D(4,﹣2),∴OC=4,CD=2,∵旋转,∴OA=OC=4,AB=CD=2,∴B(2,4),故选:A.7.(4分)我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是()A.是轴对称图形 B.是中心对称图形 C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形也不是中心对称图形【答案】B【解答】解:“赵爽弦图”是中心对称图形,但不是轴对称图形.故选:B.8.(4分)关于x的方程x2+mx﹣2=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根【答案】A【解答】解:关于x的方程x2+mx﹣2=0中,∵a=1,b=m,c=﹣2,∴Δ=m2+8>0,∴方程有两个不相等的实数根.故选:A.9.(4分)一次函数y=x﹣2n+4,二次函数y=x2+(n﹣1)x﹣3,反比例函数在同一直角坐标系中图象如图所示,则n的取值范围是()A.n>﹣1 B.n>2 C.﹣1<n<1 D.1<n<2【答案】C【解答】解:根据题意得,解得﹣1<n<1,∴n的取值范围是﹣1<n<1,故选:C.10.(4分)如图,在▱ABCD中,∠B=60°,AB=6cm,BC=12cm.点P从点A出发,以1cm/s的速度沿A→D运动,同时点Q从点C出发,以3cm/s的速度沿C→B→C→…往复运动,当点P到达端点D时,点Q随之停止运动.在此运动过程中,线段PQ=CD出现的次数是()A.3 B.4 C.5 D.6【答案】B【解答】解:由已知可得,P从A到D需12s,Q从C到B(或从B到C)需4s,设P,Q运动时间为ts,①当0≤t≤4时,过Q作QH⊥AD于H,过C作CG⊥AD于G,如图:由题可知,AP=tcm,CQ=3tcm=GH,∵PD∥CQ,PQ=CD,∴四边形CQPD是等腰梯形,∴∠QPH=∠D=∠B=60°,∵PQ=CD=AB=6cm,∴PHPQ=3cm,DGCD=3cm,∵AP+PH+GH+DG=AD=BC=12,∴t+3+3t+3=12,解得t=1.5;当四边形CQPD是平行四边形时,如图:此时PD=CQ=3tcm,∴t+3t=12,解得t=3,∴t为1.5s或3s时,PQ=CD;②当4<t≤8时,若四边形CQPD是平行四边形,如图:此时BQ=3(t﹣4)cm,AP=tcm,∵AD=BC,PD=CQ,∴BQ=AP,∴3(t﹣4)=t,解得t=6;由①知,若四边形CQPD是CD,PQ为腰的等腰梯形,则PD>6cm,这种情况在4<t≤8时不存在;∴t为6s时,PQ=CD;③当8<t≤12时,若四边形CQPD是平行四边形,如图:此时CQ=3(t﹣8),PD=12﹣t,∴3(t﹣8)=12﹣t,解得t=9,∴t为9s时,PQ=CD;综上所述,t为1.5s或3s或6s或9s时,PQ=CD;故选:B.11.(4分)如图,等边△ABC钢架的立柱CD⊥AB于点D,AB长12m.现将钢架立柱缩短成DE,∠BED=60°.则新钢架减少用钢()A.(24﹣12)m B.(24﹣8)m C.(24﹣6)m D.(24﹣4)m【答案】D【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,AB=BC=AC=12,BD=6,∴CD,∵∠BED=60°,∴DE,BE=AE,∴减少用钢为(AB+AC+BC+CD)﹣(AE+BE+AB+DE)=AC+BC+CD﹣AE﹣BE﹣DE=24(cm),故选:D.12.(4分)如图,在矩形ABCD中,AF平分∠BAC,将矩形沿直线EF折叠,使点A,B分别落在边AD、BC上的点A′,B′处,EF,A′F分别交AC于点G,H.若GH=2,HC=8,则BF的长为()A. B. C. D.5【答案】A【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴,,∴,∴,∴.∴AG,∵AF平分∠BAC,∴∠BAF=∠FAC,∵EF∥AB,∴∠BAF=∠AFG,∴∠GAF=∠GFA,∴FG=AG,∵CF,∵BF:CF=AG:CG=1:3,∴BFCF.故选:A.二、填空题(共6个小题,每小题4分,共24分)13.(4分)分解因式:x2﹣3x=x(x﹣3).【答案】见试题解答内容【解答】解:原式=x(x﹣3),故答案为:x(x﹣3)14.(4分)计算:1.【答案】1.【解答】解:=1,故答案为:1.15.(4分)凸七边形的内角和是900度.【答案】900.【解答】解:∵n=7,∴内角和为:180°(7﹣2)=900°,故答案为:900.16.(4分)一次函数y=(3m+1)x﹣2的值随x的增大而增大,请写出一个满足条件的m的值1.【答案】1.【解答】解:∵y=(3m+1)x﹣2的值随x的增大而增大,∴3m+1>0,∴m,∴m可以为:1,故答案为:1.17.(4分)龚扇是自贡“小三绝”之一,为弘扬民族传统文化,某校手工兴趣小组将一个废弃的大纸杯侧面剪开直接当作扇面,制作了一个龚扇模型(如图),扇形外侧两竹条AB,AC夹角为120°,AB长30cm,扇面的BD边长为18cm,则扇面面积为252πcm2(结果保留π).【答案】252π.【解答】解:扇面面积=扇形BAC的面积﹣扇形DAE的面积=252π(cm2),故答案为:252π.18.(4分)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE=6.6m,OE=1.4m,OB=6m,OC=5m,OD=3m,班长买来可切断的围栏16m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是46.4m2.【答案】46.4.【解答】解:设矩形在射线OA上的一段长为xm.(1)当x≤8时,当x=8时,S=46.4,(2)当x>8时.,由于在x>8的范围内,S均小于46.4.所以由于(1)(2)得最大面积为46.4m2.故答案为:46.4.三、解答题(共8个题,共78分)19.(8分)计算:(tan45°﹣2)0+|2﹣3|.【答案】﹣1.【解答】解:(tan45°﹣2)0+|2﹣3|=1+1﹣3=﹣1.20.(8分)如图,在△ABC中,DE∥BC,∠EDF=∠C.(1)求证:∠BDF=∠A;(2)若∠A=45°,DF平分∠BDE,请直接写出△ABC的形状.【答案】(1)见解析;(2)△ABC是等腰直角三角形.【解答】(1)证明:∵DE∥BC,∴∠C=∠AED,∵∠EDF=∠C,∴∠AED=∠EDF,∴DF∥AC,∴∠BDF=∠A;(2)解:∵∠A=45°,∴∠BDF=45°,∵DF平分∠BDE,∴∠BDE=2∠BDF=90°,∵DE∥BC,∴∠B=90°,∴△ABC是等腰直角三角形.21.(8分)为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.【答案】甲组同学平均每小时包100个粽子,乙组同学平均每小时包80个粽子.【解答】解:设乙组同学平均每小时包x个粽子,则甲组同学平均每小时包(x+20)个粽子,根据题意得,解得x=80,经检验,x=80是原方程的解,x+20=100.答:甲组同学平均每小时包100个粽子,乙组同学平均每小时包80个粽子.22.(8分)在Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点分别为D,E,F.(1)图1中三组相等的线段分别是CE=CF,AF=AD,BD=BE;若AC=3,BC=4,则⊙O半径长为1;(2)如图2,延长AC到点M,使AM=AB,过点M作MN⊥AB于点N.求证:MN是⊙O的切线.【答案】(1)AD,BE,1;(2)证明见解答过程.【解答】(1)解:连接OE,OF,如图:由切线长定理可知,AF=AD,BD=BE,∵∠C=90°,⊙O是△ABC的内切圆,∴∠C=∠OEC=∠OFC=90°,OE=OF,∴四边形OECF是正方形,设OE=OF=CF=CE=x,则BE=BC﹣CE=4﹣x=BD,AF=AC﹣CF=3﹣x=AD,∵BD+AD=AB5,∴4﹣x+3﹣x=5,解得x=1,∴OE=1,即⊙O半径长为1;故答案为:AD,BE,1;(2)证明:过O作OH⊥MN于H,连接OD,OE,OF,如图:∵∠ANM=90°=∠ACB,∠A=∠A,AM=AB,∴△AMN≌△ABC(AAS),∴AN=AC,∵AD=AF,∴AN﹣AD=AC﹣AF,即DN=CF,同(1)可知,CF=OE,∴DN=OE,∵∠ANM=90°=∠ODN=∠OHN,∴四边形OHND是矩形,∴OH=DN,∴OH=OE,即OH是⊙O的半径,∵OH⊥MN,∴MN是⊙O的切线.23.(10分)某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如表),并绘制出不完整的条形统计图(如图).学生体质健康统计表成绩频数百分比不及格3a及格b20%良好45c优秀3232%(1)如表中a=3%,b=20,c=45%;(2)请补全如图的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会,请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.【答案】(1)3%,20,45%;(2)见解析,462;(3).【解答】解:(1)这次调查的人数为:32÷32%=100(人),a100%=3%,b=100×20%=20,c100%=45%,故答案为:3%,20,45%;(2)补全条形统计图如下:600×(45%+32%)=462(人),估计该校学生体质健康测试结果为“良好”和“优秀”的总人数为462人;(3)设3名“良好”分别为甲、乙、丙,1名“优秀”学生为丁,画树状图如图:∵共有12种等可能的结果,其中恰好选中两人均为“良好”的结果有6种,∴所抽取的两人均为“良好”的概率为.24.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y的图象交于A(﹣6,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)P是直线x=﹣2上的一个动点,△PAB的面积为21,求点P坐标;(3)点Q在反比例函数y位于第四象限的图象上,△QAB的面积为21,请直接写出Q点坐标.【答案】(1)反比例函数的解析式为y;一次函数的解析式为y=﹣x﹣5;(2)P的坐标为(﹣2,3)或(﹣2,﹣9);(3)Q的坐标为(,)或(3,﹣2).【解答】解:(1)把A(﹣6,1)代入y得:1,∴m=﹣6,∴反比例函数的解析式为y;把B(1,n)代入y得:n=﹣6,∴B(1,﹣6),把A(﹣6,1),B(1,﹣6)代入y=kx+b得:,解得,∴一次函数的解析式为y=﹣x﹣5;(2)设直线x=﹣2交直线AB于H,如图:在y=﹣x﹣5中,令x=﹣2得y=﹣3,∴N(﹣2,﹣3),∵△PAB的面积为21,∴PH•|xB﹣xA|=21,即PH×(1+6)=21,∴PH=6,∵﹣3+6=3,﹣3﹣6=﹣9,∴P的坐标为(﹣2,3)或(﹣2,﹣9);(3)过Q作QM∥x轴交直线AB于M,如图:设Q(t,),在y=﹣x﹣5中,令y得x5,∴M(5,),∴MQ=|5﹣t|,∵△QAB的面积为21,∴MQ•|yA﹣yB|=21,即|5﹣t|×7=21,∴5﹣t=6或5﹣t=﹣6,解得t或t=﹣2或t=3,经检验,t,t=3符合题意,∴Q的坐标为(,)或(3,﹣2).25.(12分)为测量水平操场上旗杆的高度,九(2)班各学习小组运用了多种测量方法.(1)如图1,小张在测量时发现,自己在操场上的影长EF恰好等于自己的身高DE.此时,小组同学测得旗杆AB的影长BC为11.3m,据此可得旗杆高度为11.3m;(2)如图2,小李站在操场上E点处,前面水平放置镜面C,并通过镜面观测到旗杆顶部A.小组同学测得小李的眼睛距地面高度DE=1.5m,小李到镜面距离EC=2m,镜面到旗杆的距离CB=16m.求旗杆高度;(3)小王所在小组采用图3的方法测量,结果误差较大.在更新测量工具,优化测量方法后,测量精度明显提高,研学旅行时,他们利用自制工具,成功测量了江姐故里广场雕塑的高度.方法如下:如图4,在透明的塑料软管内注入适量的水,利用连通器原理,保持管内水面M,N两点始终处于同一水平线上.如图5,在支架上端P处,用细线系小重物Q,标高线PQ始终垂直于水平地面.如图6,在江姐故里广场上E点处,同学们用注水管确定与雕塑底部B处于同一水平线的D,G两点,并标记观测视线DA与标高线交点C,测得标高CG=1.8m,DG=1.5m.将观测点D后移24m到D′处.采用同样方法,测得C′G′=1.2m,D′G′=2m.求雕塑高度(结果精确到1m).【答案】(1)11.3;(2)旗杆高度为12米;(3)雕塑高度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论