2022年河南省南阳内乡县联考数学九年级第一学期期末统考模拟试题含解析_第1页
2022年河南省南阳内乡县联考数学九年级第一学期期末统考模拟试题含解析_第2页
2022年河南省南阳内乡县联考数学九年级第一学期期末统考模拟试题含解析_第3页
2022年河南省南阳内乡县联考数学九年级第一学期期末统考模拟试题含解析_第4页
2022年河南省南阳内乡县联考数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和2.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根3.用配方法解方程2x2-x-2=0,变形正确的是()A. B.=0 C. D.4.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=28º,则∠P的度数是()A.50º B.58ºC.56º D.55º5.已知一元二次方程,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根6.如图,在平面直角坐标系中,与轴相切,直线被截得的弦长为,若点的坐标为,则的值为()A. B. C. D.7.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A.2 B.3 C.4 D.58.计算的结果是()A. B. C. D.9.如图,切于两点,切于点,交于.若的周长为,则的值为()A. B. C. D.10.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯二、填空题(每小题3分,共24分)11.如图,,如果,那么_________________.12.对于两个不相等的实数a、b,我们规定max{a、b}表示a、b中较大的数,如max{1,1}=1.那么方程max{1x,x﹣1}=x1﹣4的解为.13.如图,扇形OAB,∠AOB=90,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是.14.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第_____象限.15.已知点A(m,1)与点B(3,n)关于原点对称,则m+n=_________。16.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=1.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是(写出所有正确结论的序号).17.将抛物线y=x2+2x向右平移1个单位后的解析式为_____.18.函数中,自变量的取值范围是_____.三、解答题(共66分)19.(10分)如图,在等腰三角形ABC中,于点H,点E是AH上一点,延长AH至点F,使.求证:四边形EBFC是菱形.20.(6分)如图,四边形是平行四边形,,,点为边的中点,点在的延长线上,且.点在线段上,且,垂足为.(1)若,且,,求的长;(2)求证:.21.(6分)计算(1)tan60°﹣sin245°﹣3tan45°+cos60°(2)+tan30°22.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE//AB;(2)若CD=3,求四边形BEDF的周长.23.(8分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.(8分)如图,直线与双曲线相交于点A,且,将直线向左平移一个单位后与双曲线相交于点B,与x轴、y轴分别交于C、D两点.(1)求直线的解析式及k的值;(2)连结、,求的面积.25.(10分)如图,平面直角坐标系中,点、点在轴上(点在点的左侧),点在第一象限,满足为直角,且恰使∽△,抛物线经过、、三点.(1)求线段、的长;(2)求点的坐标及该抛物线的函数关系式;(3)在轴上是否存在点,使为等腰三角形?若存在,求出所有符合条件的点的坐标,若不存在,请说明理由.26.(10分)如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图像交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了ts.(1)求点D的坐标;(2)若PQ∥OD,求此时t的值?(3)是否存在时刻某个t,使S△DOP=S△PCQ?若存在,请求出t的值,若不存在,请说明理由;(4)当t为何值时,△DPQ是以DQ为腰的等腰三角形?

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.2、D【详解】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.3、D【解析】用配方法解方程2−x−2=0过程如下:移项得:,二次项系数化为1得:,配方得:,即:.故选D.4、C【分析】利用切线长定理可得切线的性质的PA=PB,,则,,再利用互余计算出,然后在根据三角形内角和计算出的度数.【详解】解:∵PA,PB是⊙O的切线,A,B为切点,∴PA=PB,,∴在△ABP中∴故选:C.【点睛】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键.5、A【详解】解:∵a=2,b=-5,c=3,∴△=b2-4ac=(-5)2-4×2×3=1>0,∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,熟记公式正确计算是解题关键,难度不大.6、B【分析】过点P作PH⊥AB于H,PD⊥x轴于D,交直线y=x于E,连结PA,根据切线的性质得PC⊥y轴,则P点的横坐标为4,所以E点坐标为(4,4),易得△EOD和△PEH都是等腰直角三角形,根据垂径定理由PH⊥AB得AH=,根据勾股定理可得PH=2,于是根据等腰直角三角形的性质得PE=,则PD=,然后利用第一象限点的坐标特征写出P点坐标.【详解】解:过点P作PH⊥AB于H,PD⊥x轴于D,交直线y=x于E,连结PA,

∵⊙P与y轴相切于点C,

∴PC⊥y轴,

∴P点的横坐标为4,

∴E点坐标为(4,4),

∴△EOD和△PEH都是等腰直角三角形,

∵PH⊥AB,

∴AH=,

在△PAH中,PH=,

∴PE=,

∴PD=,

∴P点坐标为(4,).故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了垂径定理.7、B【解析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.8、D【分析】根据同底数幂相乘的运算公式进行计算即可.【详解】解:=故选:D.【点睛】本题考查同底数幂相乘的运算,熟练掌握运算公式是解题的关键.9、A【分析】利用切线长定理得出,然后再根据的周长即可求出PA的长.【详解】∵切于两点,切于点,交于∴的周长为∴故选:A.【点睛】本题主要考查切线长定理,掌握切线长定理是解题的关键.10、B【分析】事先能肯定它一定会发生的事件称为必然事件,即发生的概率是1的事件.【详解】解:A.掷一次骰子,向上一面的点数是6,属于随机事件;B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;C.射击运动员射击一次,命中靶心,属于随机事件;D.经过有交通信号灯的路口,遇到红灯,属于随机事件;故选B.【点睛】此题主要考查事件发生的概率,解题的关键是熟知必然事件的定义.二、填空题(每小题3分,共24分)11、【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵,∴,即,解得:.故答案为:.【点睛】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.12、【分析】直接分类讨论得出x的取值范围,进而解方程得出答案.【详解】解:当1x>x﹣1时,故x>﹣1,则1x=x1﹣4,故x1﹣1x﹣4=0,(x﹣1)1=5,解得:x1=1+,x1=1﹣;当1x<x﹣1时,故x<﹣1,则x﹣1=x1﹣4,故x1﹣x﹣1=0,解得:x3=1(不合题意舍去),x4=﹣1(不合题意舍去),综上所述:方程max{1x,x﹣1}=x1﹣4的解为:x1=1+,x1=1﹣.故答案为:x1=1+,x1=1﹣.【点睛】考核知识点:一元二次方程.理解规则定义是关键.13、【详解】依题意连接OC则P在OC上,连接PF,PE则PF⊥OA,PE⊥OB,由切线长定理可知四边形OEPF为正方形,且其边长即⊙P的半径(设⊙P的半径为r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴14、一【分析】由二次函数解析式表示出顶点坐标,根据图形得到顶点在第四象限,求出m与n的正负,即可作出判断.【详解】根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.【点睛】此题考查了二次函数与一次函数图象与系数的关系,熟练掌握二次函数及一次函数的图象与性质是解本题的关键.15、-1【分析】根据两个点关于原点对称时,它们的坐标符号相反,可直接得到m=-3,n=-1进而得到答案.【详解】解:∵点A(m,1)与点B(3,n)关于原点对称,

∴m=-3,n=-1,

∴m+n=-1,

故答案为:-1.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.16、①②④.【解析】①∵AB是⊙O的直径,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED,故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2,故②正确;③∵AF=1,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=,故③错误;④∵DF=DG+FG=6,AD==,∴S△ADF=DF•AG=×6×,∵△ADF∽△AED,∴,∴=,∴S△AED=,∴S△DEF=S△AED﹣S△ADF=;故④正确.故答案为①②④.17、y=x2﹣1.【分析】通过配方法先求出原抛物线的顶点坐标,继而得到平移后新抛物线的顶点坐标,然后利用顶点式即可求得新抛物线的解析式.【详解】∵y=x2+2x=(x+1)2-1,∴原抛物线的顶点为(-1,-1),∵将抛物线y=x2+2x向右平移1个单位得到新的抛物线,∴新抛物线的顶点为(0,-1),∴新抛物线的解析式为y=x2-1,故答案为:y=x2-1.【点睛】本题考查了抛物线的平移,得到原抛物线与新抛物线的顶点坐标是解题的关键.18、【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.三、解答题(共66分)19、见解析.【分析】根据等腰三角形的三线合一可得BH=HC,结合已知条件,从而得出四边形EBFC是平行四边形,再根据得出四边形EBFC是菱形.【详解】证明:,,∴四边形EBFC是平行四边形又,∴四边形EBFC是菱形.【点睛】本题考查了菱形的判定和性质,以及等腰三角形的性质,熟练掌握相关的知识是解题的关键.20、(1);(2)证明见解析【分析】(1)由勾股定理求出BF,进而得出AE的长,再次利用勾股定理得出AB的长,最后根据平行四边形的性质与勾股定理求出AD的长;(2)设,根据勾股定理求出CH的长,利用直角三角形斜边上的中线是斜边的一半得出EH的长,进而得出CE的长,根据得出,利用勾股定理求出BG,GH的长,根据求出BF,进而得证.【详解】(1)解:∵,,且,,∴由勾股定理知,,∴,∴由勾股定理知,,∵四边形是平行四边形,,,∴由勾股定理知,;(2)证明:∵点为边的中点,,设,∴,由勾股定理知,,∵,∴是斜边上的中线,∴,∴,∵,即,∵,∴,∴,即,∴,∴在中,,∴解得,,,∵易证,∴,即,∵,∴,∴,∴.【点睛】本题考查平行四边形的性质,相似三角形的判定与性质,勾股定理,直角三角形斜边中线的性质等,熟练掌握相似三角形的判定与勾股定理是解题的关键.21、(1)0;(2)【分析】(1)将特殊角的三角函数值代入求解;(2)将特殊角的三角函数值代入求解.【详解】(1)原式=×﹣()2﹣3×1+=3﹣﹣3+=0;(2)原式====.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.22、(1)见详解;(2)12【分析】(1)由角平分线性质,得到∠ABD=∠CBD,由EF是BD的中垂线,则BE=DE,则∠CBD=∠EDB,则∠ABD=∠EDB,即可得到答案;(2)先证明四边形BEDF是菱形,由DE∥AB,得到DE=CD=3,即可求出周长;【详解】(1)证明:∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,∵EF是BD的中垂线,∴BE=DE,BF=DF,∴∠CBD=∠EDB,∴∠ABD=∠EDB,∴DE∥AB;(2)解:与(1)同理,可证DF∥BC,∴四边形BEDF是平行四边形,∵BE=DE,∴四边形BEDF是菱形,∵AB=BC,DE∥AB,∴∠C=∠ABC=∠DEC,∴DE=CD=3,∴菱形BEDF的周长为:.【点睛】本题考查了菱形的判定和性质,垂直平分线的性质,角平分线的性质,以及等腰三角形的性质,解题的关键是熟练掌握所学的性质,从而正确的进行推导.23、(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【解析】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24、(1)直线的解析式为,k=1;(2)2.【解析】(1)根据平移的性质即可求得直线的解析式,由直线和即可求得A的坐标,然后代入双曲线求得k的值;(2)作轴于E,轴于F,联立方程求得B点的坐标,然后根据,求得即可.【详解】解:(1)根据平移的性质,将直线向左平移一个单位后得到,∴直线的解析式为,∵直线与双曲线相交于点A,∴A点的横坐标和纵坐标相等,∵,∴,;(2)作轴于E,轴于F,解得或∴,∵,∴.【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会构建方程组确定交点坐标,属于中考常考题型.25、(1)OB=6,=;(2)的坐标为;;(3)存在,,,,【分析】(1)根据题意先确定OA,OB的长,再根据△OCA∽△OBC,可得出关于OC、OA、OB的比例关系式即可求出线段、的长;(2)由题意利用相似三角形的对应边成比例和勾股定理来求C点的坐标,并将C点坐标代入抛物线中即可求出抛物线的解析式;(3)根据题意运用等腰三角形的性质,对所有符合条件的点的坐标进行讨论可知有四个符合条件的点,分别进行分析求解即可.【详解】解:(1)由()得,,即:,∵∽∴∴(舍去)∴线段的长为.(2)∵∽∴,设,则,由得,解得(-2舍去),∴,,过点作于点,由面积得,∴的坐标为将点的坐标代入抛物线的解析式得∴.(3)存在,,,①当P1与O重合时,△BCP1为等腰三角形∴P1的坐标为(0,0);②当P2B=BC时(P2在B点的左侧),△BCP2为等腰三角形∴P2的坐标为(6-2,0);③当P3为AB的中点时,P3B=P3C,△BCP3为等腰三角形∴P3的坐标为(4,0);④当BP4=BC时(P4在B点的右侧),△BCP4为等腰三角形∴P4的坐标为(6+2,0);∴在x轴上存在点P,使△BCP为等腰三角形,符合条件的点P的坐标为:,,,.【点睛】本题考查二次函数的综合问题,掌握由抛物线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论