2022年河北省邯郸市馆陶县数学九年级第一学期期末学业水平测试模拟试题含解析_第1页
2022年河北省邯郸市馆陶县数学九年级第一学期期末学业水平测试模拟试题含解析_第2页
2022年河北省邯郸市馆陶县数学九年级第一学期期末学业水平测试模拟试题含解析_第3页
2022年河北省邯郸市馆陶县数学九年级第一学期期末学业水平测试模拟试题含解析_第4页
2022年河北省邯郸市馆陶县数学九年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.92.,是的两条切线,,为切点,直线交于,两点,交于点,为的直径,下列结论中不正确的是()A. B. C. D.3.如图,已知,是的中点,且矩形与矩形相似,则长为()A.5 B. C. D.64.如图,是的外接圆,,点是外一点,,,则线段的最大值为()A.9 B.4.5 C. D.5.已知关于x的方程x2-kx-6=0的一个根为x=-3,则实数k的值为()A.1 B.-1 C.2 D.-26.如图,、分别与相切于、两点,点为上一点,连接,,若,则的度数为()A. B. C. D.7.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.π C.π﹣3 D.+π8.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=99.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A. B. C. D.10.﹣2的绝对值是()A.2 B. C. D.11.下列方程中,没有实数根的方程是()A.(x-1)2=2C.3x212.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为_____.14.已知a=3+2,b=3-2,则a2b+ab2=_________.15.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.16.已知等腰,,BH为腰AC上的高,,,则CH的长为______.17.如图,已知菱形中,,为钝角,于点,为的中点,连接,.若,则过、、三点的外接圆半径为______.18.在中,,则的面积是__________.三、解答题(共78分)19.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)20.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B

70≤x<80

30

aC

80≤x<90

b

0.45D

90≤x<100

8

0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.21.(8分)已知一次函数的图象与二次函数的图象相交于和,点是线段上的动点(不与重合),过点作轴,与二次函数的图象交于点.(1)求的值;(2)求线段长的最大值;(3)当为的等腰直角三角形时,求出此时点的坐标.22.(10分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.23.(10分)已知直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线解析式;(2)点C(m,0)在线段OA上(点C不与A,O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE=AD,求m的值;(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D,B,M,N为顶点的四边形为平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.24.(10分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.25.(12分)如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.26.如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成面积为200m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=10°,OB=1,∴AO=1,则OP=6,故BP=6-1=1.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.2、B【解析】根据切线的性质和切线长定理得到PA=PB,∠APE=∠BPE,,易证△PAE≌△PBE,得到E为AB中点,根据垂径定理得;通过互余的角的运算可得.【详解】解:∵,是的两条切线,∴,∠APE=∠BPE,故A选项正确,在△PAE和△PBE中,,∴△PAE≌△PBE(SAS),∴AE=BE,即E为AB的中点,∴,即,故C选项正确,∴∵为切点,∴,则,∴∠PAE=∠AOP,又∵,∴∠PAE=∠ABP,∴,故D选项正确,故选B.【点睛】本题主要考查了切线长定理、全等三角形的判定和性质、垂径定理的推论及互余的角的运算,熟练掌握这些知识点的运用是解题的关键.3、B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:∵矩形ABDC与矩形ACFE相似,∴,∵,是的中点,∴AE=5∴,解得,AC=5,故选B.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.4、C【分析】连接OB、OC,如图,则△OBC是顶角为120°的等腰三角形,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,根据等腰三角形的性质和锐角三角函数可得,于是求OP的最大值转化为求PM的最大值,因为,所以当P、B、M三点共线时,PM最大,据此求解即可.【详解】解:连接OB、OC,如图,则OB=OC,∠BOC=2∠A=120°,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,过点O作ON⊥PM于点N,则∠MON=60°,MN=PM,在直角△MON中,,∴,∴当PM最大时,OP最大,又因为,所以当P、B、M三点共线时,PM最大,此时PM=3+6=9,所以OP的最大值是:.故选:C.【点睛】本题考查了圆周角定理、等腰三角形的性质、旋转的性质、解直角三角形和两点之间线段最短等知识,具有一定的难度,将△OPC绕点O顺时针旋转120°到△OMB的位置,将求OP的最大值转化为求PM的最大值是解题的关键.5、B【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【详解】解:因为x=-3是原方程的根,所以将x=-3代入原方程,即(-3)2+3k−6=0成立,解得k=-1.故选:B.【点睛】本题考查的是一元二次方程的根即方程的解的定义,解题的关键是把方程的解代入进行求解.6、C【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】解:连接、,∵、分别与相切于、两点,∴,,∴.∴,∴.故选C.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.7、B【解析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【详解】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积=,故选B.【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.8、D【分析】先移项,再在方程两边都加上一次项系数一半的平方,即可得出答案.【详解】解:移项得:x2﹣4x=5,配方得:,(x﹣2)2=9,故选:D.【点睛】本题考查的知识点是用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤是解此题的关键.9、B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有,共2个,∴卡片上的数为无理数的概率是.故选B.【点睛】本题考查了无理数的定义及概率的计算.10、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.11、D【解析】先把方程化为一般式,再分别计算各方程的判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:A、方程化为一般形式为:x2-2x-1=0,△=(−2)2−4×1×(−1)=8>0,方程有两个不相等的实数根,所以B、方程化为一般形式为:2x2-x-3=0,△=(−1)2−4×2×(−3)=25>0,方程有两个不相等的实数根,所以C、△=(−2)2−4×3×(−1)=16>0,方程有两个不相等的实数根,所以C选项错误;D、△=22−4×1×4=−12<0,方程没有实数根,所以D选项正确.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12、D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.二、填空题(每题4分,共24分)13、30°【分析】由旋转的性质可得BC=CD,∠BCD=∠ACE,可得∠B=∠BDC=50°,由三角形内角和定理可求∠BCD=80°=∠ACE,由外角性质可求解.【详解】解:∵将△ABC绕点C顺时针旋转,∴BC=CD,∠BCD=∠ACE,∴∠B=∠BDC=50°,∴∠BCD=80°=∠ACE,∵∠ACE=∠B+∠A,∴∠A=80°﹣50°=30°,故答案为:30°.【点睛】本题考查了旋转的性质,三角形内角和与三角形外角和性质,解决本题的关键是正确理解题意,熟练掌握旋转的性质,能够由旋转的到相等的角.14、6【解析】仔细观察题目,先对待求式提取公因式化简得ab(a+b),将a=3+2,b=3-2,代入运算即可.【详解】解:待求式提取公因式,得将已知代入,得故答案为6.【点睛】考查代数式求值,熟练掌握提取公因式法是解题的关键.15、【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=.故答案为:.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.16、或【分析】如图所示,分两种情况,利用特殊角的三角函数值求出的度数,利用勾股定理求出所求即可.【详解】当为钝角时,如图所示,在中,,,,根据勾股定理得:,即,;当为锐角时,如图所示,在中,,,,设,则有,根据勾股定理得:,解得:,则,故答案为或【点睛】此题属于解直角三角形题型,涉及的知识有:等腰三角形的性质,勾股定理,以及特殊角的三角函数值,熟练掌握直角三角形的性质及分类的求解的数学思想是解本题的关键.17、【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM长,根据圆的性质即可求解.【详解】如图,延长MN交DA延长线于点E,过D作DF⊥BC交BC延长线于F,连接MD,∵四边形ABCD是菱形,∴AB=BC=CD=4,AD∥BC,∴∠E=∠EMB,∠EAN=∠NBM,∵AN=BN,∴△EAN≌BMN,∴AE=BM,EN=MN,∵,∴DN⊥EM,∴DE=DM,∵AM⊥BC,DF⊥BC,AB=DC,AM=DF∴△ABM≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt△DMF中,由勾股定理得,DF2=DM2-MF2=(4+x)2-42,在Rt△DCF中,由勾股定理得,DF2=DC2-CF2=42-x2,∴(4+x)2-42=42-x2,解得,x1=,x2=(不符合题意,舍去)∴DM=,∴∴过、、三点的外接圆的直径为线段DM,∴其外接圆的半径长为.故答案为:.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.18、24【分析】如图,由三角函数的定义可得,可得AB=,利用勾股定理可求出AC的长,根据三角形面积公式求出△ABC的面积即可.【详解】∵,∴AB=,∴()2=AC2+BC2,∵BC=8,∴25AC2=9AC2+9×64,解得:AC=6(负值舍去),∴△ABC的面积是×8×6=24,故答案为:24【点睛】本题考查三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是角的邻边与斜边的比值;正切是角的对边与邻边的比值;熟练掌握三角函数的定义是解题关键.三、解答题(共78分)19、(1);(2)此校车在AB路段超速,理由见解析.【分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【详解】解:(1)由题意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB路段超速.【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.20、(1)0.3,45;(2)108°;(3).【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)1,3;(2)最大值为;(3)【分析】(1)将点分别代入一次函数解析式可求得b的值,再将点A的坐标代入二次函数可求出a的值;

(2)设,则,根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PC的长关于m的二次函数,根据二次函数的性质可得答案;

(3)同(2)设出点P,C的坐标,根据题意可用含m的式子表示出AC,PC的长,根据AC=PC可得关于m的方程,求得m的值,进而求出点P的坐标.【详解】解:(1)∵在直线上,∴,∴.又∵在拋物线上,∴,解得.(2)设,则,∴,∴当时,有最大值,最大值为.(3)如图,∵为的等腰三角形且轴,∴连接,轴,∵,∴,.∵,∴,化简,得,解得,(不合题意,舍去).当时,,∴此时点的坐标为.【点睛】本题是二次函数综合题,主要考查了求待定系数法求函数解析式,二次函数的最值以及等腰三角形的性质等知识,利用平行于y轴的直线上两点间的距离建立出二次函数模型求出最值是解题关键.22、(1);(2)P(,);(3)C(-3,-5)或(-3,)【分析】(1)设顶点式,将B点代入即可求;(2)根据4m+3n=12确定点P所在直线的解析式,再根据内切线的性质可知P点在∠BAO的角平分线上,求两线交点坐标即为P点坐标;(3)根据角之间的关系确定C在∠DBA的角平分线与对称轴的交点或∠ABO的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B(0,4)代入得,4=9a∴a=∴(2)如图∵P(m,n),且满足4m+3n=12∴∴点P在第一象限的上,∵以点P为圆心的圆与直线AB、x轴相切,∴点P在∠BAO的角平分线上,∠BAO的角平分线:y=,∴,∴x=,∴y=∴P(,)(3)C(-3,-5)或(-3,)理由如下:如图,A´(3,0),可得直线LA´B的表达式为,∴P点在直线A´B上,∵∠PA´O=∠ABO=∠BAG,2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE⊥AG于G点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=,∴D(-3,),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=x+4,∴C1的坐标为(-3,);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3,)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.23、(1)y=﹣x2﹣2x+3;(2)m=﹣2;(3)存在,点N的坐标为(﹣1,﹣2)或(﹣1,0),理由见解析【分析】(1)先确定出点A,B坐标,再用待定系数法即可得出结论;(2)先表示出DE,再利用勾股定理表示出AD,建立方程即可得出结论;(3)分两种情况:①以BD为一边,判断出△EDB≌△GNM,即可得出结论.②以BD为对角线,利用中点坐标公式即可得出结论.【详解】(1)当x=0时,y=3,∴B(0,3),当y=0时,x+3=0,x=﹣3,∴A(﹣3,0),把A(﹣3,0),B(0,3)代入抛物线y=﹣x2+bx+c中得:,解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3,(2)∵CD⊥OA,C(m,0),∴D(m,m+3),E(m,﹣m2﹣2m+3),∴DE=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∵AC=m+3,CD=m+3,由勾股定理得:AD=(m+3),∵DE=AD,∴﹣m2﹣3m=2(m+3),∴m1=﹣3(舍),m2=﹣2;(3)存在,分两种情况:①以BD为一边,如图1,设对称轴与x轴交于点G,∵C(﹣2,0),∴D(﹣2,1),E(﹣2,3),∴E与B关于对称轴对称,∴BE∥x轴,∵四边形DNMB是平行四边形,∴BD=MN,BD∥MN,∵∠DEB=∠NGM=90°,∠EDB=∠GNM,∴△EDB≌△GNM,∴NG=ED=2,∴N(﹣1,﹣2);②当BD为对角线时,如图2,此时四边形BMDN是平行四边形,设M(n,﹣n2﹣2n+3),N(﹣1,h),∵B(0,3),D(-2,1),∴∴n=-1,h=0∴N(﹣1,0);综上所述,点N的坐标为(﹣1,﹣2)或(﹣1,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式,根据线段之间的数量关系求点坐标,根据点的位置构建平行四边形,(3)中以BD为对角线时,利用中点坐标公式计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论