版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省莆田砺志国际学校九上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上 B.可能有3次正面朝上C.至少有1次正面朝上 D.不可能有6次正面朝上2.从1、2、3、4四个数中随机选取两个不同的数,分别记为,,则满足的概率为()A. B. C. D.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为()A. B. C. D.5.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1 C.与x轴有两个交点 D.顶点坐标是(1,2)6.顺次连接菱形各边中点得到的四边形一定是()A.菱形 B.矩形 C.正方形 D.不确定7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为(
)A. B. C.
D.8.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()A.开口向上 B.对称轴是y轴C.有最低点 D.在对称轴右侧的部分从左往右是下降的9.半径为6的圆上有一段长度为1.5的弧,则此弧所对的圆心角为()A. B. C. D.10.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),说法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是抛物线上两点,则y1>y2,其中说法正确的有()个.A.1 B.2 C.3 D.411.如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则等于()A.3 B.4 C.5 D.612.如图所示的两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点 D.线段FC的中点二、填空题(每题4分,共24分)13.小明制作了一张如图所示的贺卡.贺卡的宽为,长为,左侧图片的长比宽多.若,则右侧留言部分的最大面积为_________.14.如图,在平面直角坐标系中,已知▱OABC的顶点坐标分别是O(0,0),A(3,0),B(4,2),C(1,2),以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF,则点E的坐标是_____.15.一个圆锥的母线长为5cm,底面圆半径为3cm,则这个圆锥的侧面积是____cm².(结果保留π).16.如图,△OAB的顶点A的坐标为(3,),B的坐标为(4,0);把△OAB沿x轴向右平移得到△CDE,如果D的坐标为(6,),那么OE的长为_____.17.已知圆的半径为,点在圆外,则长度的取值范围为___________.18.函数y=﹣(x﹣1)2+1(x≥3)的最大值是_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)20.(8分)小明想要测量一棵树DE的高度,他在A处测得树顶端E的仰角为30°,他走下台阶到达C处,测得树的顶端E的仰角是60°.已知A点离地面的高度AB=2米,∠BCA=30°,且B,C,D三点在同一直线上.求树DE的高度;21.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标.22.(10分)解下列方程(1);(2).23.(10分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.24.(10分)已知关于x的方程(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k的取值范围25.(12分)如图,已知,是的中点,过点作.求证:与相切.26.如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:掷硬币问题,正、反面朝上的次数属于随机事件,不是确定事件,故A,C,D错误.
故选:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【分析】根据题意列出树状图,得到所有a、c的组合再找到满足的数对即可.【详解】如图:符合的共有6种情况,而a、c的组合共有12种,故这两人有“心灵感应”的概率为.故选:C.【点睛】此题考查了利用树状图法求概率,要做到勿漏、勿多,同时要适时利用概率公式解答.3、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【解析】列表得:红黄蓝红(红,红)(黄,红)(蓝,红)黄(红,黄)(黄,黄)(蓝,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)由表格可知,所有等可能的情况数有9种,其中颜色相同的情况有3种,则任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为.故选A.5、D【解析】试题解析:二次函数y=(x-1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选D.6、B【分析】菱形的对角线互相垂直,连接个边中点可得到四边形的特征.【详解】解:是矩形.
证明:如图,∵四边形ABCD是菱形,
∴AC⊥BD,
∵E,F,G,H是中点,
∴EF∥BD,FG∥AC,
∴EF⊥FG,
同理:FG⊥HG,GH⊥EH,HE⊥EF,
∴四边形EFGH是矩形.
故选:B.【点睛】本题考查了菱形的性质与判定定理,矩形的判定定理以及三角形的中位线定理.7、B【详解】解:连接AD,CD,设正方形网格的边长是1,则根据勾股定理可以得到:OD=AD=,OC=AC=,∠OCD=90°.则cos∠AOB=.故选B.8、D【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x)2+,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=,故选项B错误;当x=时取得最大值,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.9、B【分析】根据弧长公式,即可求解.【详解】∵,∴,解得:n=75,故选B.【点睛】本题主要考查弧长公式,掌握是解题的关键.10、D【分析】由抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣1时,y<0,则得到a﹣2a+c<0,则可对③进行判断;通过点(﹣5,y1)和点(,y2)离对称轴的远近对④进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=﹣1时,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正确;∵点(﹣5,y1)离对称轴要比点(,y2)离对称轴要远,∴y1>y2,所以④正确.故答案为D.【点睛】本题考查了二次函数图象与系数的关系,灵活运用二次函数解析式和图像是解答本题的关键..11、D【分析】根据点平移规律,得到点A平移后的点的坐标为(2,3),由此计算k值.【详解】∵已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,∴点A平移后的点坐标为(2,3),∵点A、B恰好同时落在反比例函数(x>0)的图象上,∴,故选:D.【点睛】此题考查点平移的规律,点沿着x轴左右平移的规律是:左减右加;点沿着y轴上下平移的规律是:上加下减,熟记规律是解题的关键.12、D【分析】直接利用中心对称图形的性质得出答案.【详解】解:两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是:线段FC的中点.故选:D.【点睛】本题比较容易,考查识别图形的中心对称性.要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合.二、填空题(每题4分,共24分)13、320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x的函数解析式,利用二次函数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm∴右侧留言部分的面积又14≤x≤16∴当x=16时,面积最大(故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解题关键是根据题意写出面积的函数表达式.14、(12,6)或(-12,-6)【分析】根据平行四边形的性质、位似变换的性质计算,得到答案.【详解】以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF∵点B的坐标为(4,2),且点B的对应点为点E∴点E的坐标为(4×3,2×3)或(-4×3,-2×3)即:(12,6)或(-12,-6)故答案为:(12,6)或(-12,-6).【点睛】本题考查了位似和平行四边形的知识;求解的关键是熟练掌握位似的性质,从而完成求解.15、15π【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:圆锥的侧面积=π×3×5=15πcm2故答案为:15π.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.16、7【分析】根据平移的性质得到AD=BE=6﹣3=3,由B的坐标为(4,0),得到OB=4,根据OE=OB+BE即可得答案.【详解】∵点A的坐标为(3,),点D的坐标为(6,),把△OAB沿x轴向右平移得到△CDE,∴AD=BE=6﹣3=3,∵B的坐标为(4,0),∴OB=4,∴OE=OB+BE=7,故答案为:7【点睛】本题考查图形平移的性质,平移不改变图形的形状和大小;图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等.17、【分析】设点到圆心的距离为d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】点P在圆外,则点到圆心的距离大于圆的半径,因而线段OP的长度的取值范围是OP>1.故答案为.【点睛】本题考查了对点与圆的位置关系的判断.熟记点与圆位置关系与数量关系的对应是解题关键,由位置关系可推得数量关系,同样由数量关系也可推得位置关系.18、-1【分析】根据函数图象自变量取值范围得出对应y的值,即是函数的最值.【详解】解:∵函数y=-(x-1)2+1,∴对称轴为直线x=1,当x>1时,y随x的增大而减小,∵当x=1时,y=-1,∴函数y=-(x-1)2+1(x≥1)的最大值是-1.故答案为-1.【点睛】此题考查的是求二次函数的最值,掌握二次函数对称轴两侧的增减性是解决此题的关键.三、解答题(共78分)19、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20、树DE的高度为6米.【分析】先根据∠ACB=30°求出AC=1米,再求出∠EAC=60°,解Rt△ACE得EC的长,依据∠DCE=60°,解Rt△CDE得的长.【详解】∵∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=1.又∵∠DCE=60°,∴∠ACE=90°.∵AF∥BD,∴∠CAF=∠ACB=30°,∴∠EAC=60°.在Rt△ACE中,∵,∴,在Rt△DCE中∵∠DCE=60°,,∴.答:树DE的高度为6米.【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.21、(1)y=-x2-2x+3,y=x+3;(2)M(-1,2).【解析】试题分析:(1)根据题意得出关于a、b、c的方程组,求得a、b、c的值,即可得出抛物线的解析式,根据抛物线的对称性得出点B的坐标,再设出直线BC的解析式,把点B、C的坐标代入即可得出直线BC的解析式;(2)点A关于对称轴的对称点为点B,连接BC,设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小,再求得点M的坐标.试题解析:(1)依题意得:,解之得:,∴抛物线解析式为y=-x2-2x+3,∵对称轴为x=-1,且抛物线经过A(1,0),∴B(-3,0),∴把B(-3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.把x=-1代入直线y=x+3得,y=2∴M(-1,2).即当点M到点A的距离与到点C的距离之和最小时M的坐标为(-1,2).考点:1.抛物线与x轴的交点;2.轴对称-最短路线问题.22、(1),;(2),.【分析】(1)利用因式分解法解方程;(2)先变形为(2x-1)2-(x-3)2=0,然后利用因式分解法解方程.【详解】(1),或,所以,;(2),,或,所以,.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23、树状图见详解,【分析】画树状图展示所有9种等可能的结果数,找出两次摸出的小球所标数字之和为3的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球所标数字之和为3的结果数为2,所以两次摸出的小球所标数字之和为3的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率24、(1)证明见解析;(2)【分析】(1)证出根的判别式即可完成;(2)将k视为数,求出方程的两个根,即可求出k的取值范围.【详解】(1)证明:∴方程总有两个实数根(2)∴∴∵方程有一个小于1的正根∴∴【点睛】本题考查一元二次方程根的判别式与方程的根之间的关系,熟练掌握相关知识点是解题关键.25、详见解析.【分析】证法一:连接,,,,连接交于点,利用线段垂直平分线的性质和垂径定理的推论证明垂直平分,然后利用垂径定理和平行线的性质求得,从而使问题得证;证法二:连接,,连接交于点,利用垂径定理的推论得到,,然后利用平行线的性质求得,从而使问题得证;证法三:过点作于点,延长交于点,利用垂径定理的推论得到是的中点,然后判断点与点是同一个点,然后然后利用平行线的性质求得,从而使问题得证.【详解】证明:证法一:连接,,,,连接交于点.∵,∴点在的垂直平分线上.∵是的中点,∴,∴,∴点在的垂直平分线上,∴垂直平分,∴,∵,∴,∴,∵点为半径的外端点,∴与相切.证法二:连接,,连接交于点.∵是的中点,∴,∴,∴,∴,∵,∴,∴,∵点为半径的外端点,∴与相切.证法三:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄河文化的丰富内涵与时代价值
- 2025新译林版英语七年级下单词默写单
- 北海2024年01版小学6年级上册英语第6单元测验卷
- 2024年洗煤项目资金申请报告代可行性研究报告
- 2024年超高分子量聚乙烯项目投资申请报告代可行性研究报告
- 《紧密纺精梳棉纱制备技术规范》
- Python程序设计实践- 习题及答案 ch02 问题求解与计算思维
- 组织部工作总结15篇
- 读书交流会专题讨论发言稿
- 广西景点导游词1000字(14篇)
- 赛事承办服务投标方案(技术方案)
- 植物学课件:第二章 种子和幼苗
- 概率论(华南农业大学)智慧树知到课后章节答案2023年下华南农业大学
- 上海中考英语专项练习-动词的时态-练习卷一和参考答案
- 软件测试规范模板
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
- 足皮肤感染的护理课件
- 我们的出行方式 (教学设计)2022-2023学年综合实践活动四年级上册 全国通用
- GB/T 16739.2-2023汽车维修业经营业务条件第2部分:汽车综合小修及专项维修业户
- 采购部环境因素和危险源识别
- 提高急性脑梗死的再灌注率PDCA
评论
0/150
提交评论