高中数学选择性必修3课件:6 1 第二课时 两个计数原理的综合应用(人教A版)_第1页
高中数学选择性必修3课件:6 1 第二课时 两个计数原理的综合应用(人教A版)_第2页
高中数学选择性必修3课件:6 1 第二课时 两个计数原理的综合应用(人教A版)_第3页
高中数学选择性必修3课件:6 1 第二课时 两个计数原理的综合应用(人教A版)_第4页
高中数学选择性必修3课件:6 1 第二课时 两个计数原理的综合应用(人教A版)_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二课时两个计数原理的综合应用1.进一步理解分类加法计数原理和分步乘法计数原理的区别.2.会正确应用这两个计数原理计数.课标要求素养要求通过进一步应用两个计数原理,提升数学抽象及数学运算素养.课前预习课堂互动分层训练内容索引课前预习知识探究1两个计数原理的区别与联系

分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种类不同点分类完成,类类相加分步完成,步步相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事(每步中的一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整点睛用两个计数原理解决问题时,需明确是需要分类还是需要分步,有时,可能既要分类又要分步.

1.思考辨析,判断正误 (1)分类计数是指将完成这件事的所有方式进行分类,每一类都能独立完成该事件.(

) (2)分步计数是指将完成这件事分解成若干步骤,当完成所有的步骤时,这个事件才算完成.(

) (3)当一个事件既需要分步又需要分类时,分步和分类没有先后之分.(

)

提示当一个事件既需要分步又需要分类时,通常要明确是先分类后分步还是先分步后分类,并且要明确分类的标准和分步的程序问题. (4)计数时,若正面分类,种类比较多,而问题的反面种类比较少时,使用间接法会简单一些.(

)√√×√2.有A,B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,要从这三名工人中选两名分别去操作这两种车床,则不同的选派方法有(

) A.6种 B.5种

C.4种 D.3种

解析不同的选派情况可分为3类:若选甲、乙,有2种方法;若选甲、丙,有1种方法;若选乙、丙,有1种方法.根据分类加法计数原理知,不同的选派方法有2+1+1=4(种).C3.某班有3名学生准备参加校运会的100米、200米、跳高、跳远四项比赛,如果每班每项限报1人,则这3名学生的参赛的不同方法有(

) A.24种 B.48种

C.64种 D.81种

解析由于每班每项限报1人,故当前面的学生报了某项之后,后面的学生不能再报,由分步乘法计数原理,共有4×3×2=24(种)不同的参赛方法.A3.某班有3名学生准备参加校运会的100米、200米、跳高、跳远四项比赛,如果每班每项限报1人,则这3名学生的参赛的不同方法有(

) A.24种 B.48种

C.64种 D.81种

解析由于每班每项限报1人,故当前面的学生报了某项之后,后面的学生不能再报,由分步乘法计数原理,共有4×3×2=24(种)不同的参赛方法.A4.(a1+a2)(b1+b2+b3)(c1+c2+c3+c4)的展开式中有________项.解析要得到项数分三步:第一步,从第一个因式中取一个因子,有2种取法;第二步,从第二个因式中取一个因子,有3种取法;第三步,从第三个因式中取一个因子,有4种取法.由分步乘法计数原理知,共有2×3×4=24(项).24课堂互动题型剖析2题型一两个计数原理在排数中的应用【例1】用0,1,2,3,4五个数字, (1)可以排成多少个三位数字的电话号码? (2)可以排成多少个三位数?

解(1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(种),即可以排成125个三位数字的电话号码. (2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(种),即可以排成100个三位数.(3)可以排成多少个能被2整除的无重复数字的三位数?解被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18(种)排法.因而有12+18=30(种)排法,即可以排成30个能被2整除的无重复数字的三位数.【迁移】

(变设问)由本例中的五个数字可组成多少个无重复数字的四位奇数?

解完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,把1,2,3,4中除去用过的一个剩下的3个中任取一个,有3种方法;第三步,第四步把剩下的包括0在内的3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理知共有2×3×3×2=36(个).【迁移】

(变设问)由本例中的五个数字可组成多少个无重复数字的四位奇数?

解完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,把1,2,3,4中除去用过的一个剩下的3个中任取一个,有3种方法;第三步,第四步把剩下的包括0在内的3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理知共有2×3×3×2=36(个).对于组数问题,应掌握以下原则:(1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法求解.(2)要注意数字“0”不能排在两位数字或两位数字以上的数的最高位.思维升华【训练1】

从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为(

) A.24 B.18 C.12 D.6

解析由于题目要求是奇数,那么对于此三位数可以分成两种情况;奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种情况),之后十位(2种情况),最后百位(2种情况),共12种;如果是第二种情况偶奇奇:个位(3种情况),十位(2种情况),百位(不能是0,1种情况),共6种,因此总共有12+6=18(种)情况.故选B.B【例2】高三年级的四个班到甲、乙、丙、丁、戊五个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有(

) A.360种 B.420种

C.369种 D.396种

解析法一

(直接法)

以甲工厂分配班级情况进行分类,共分为四类:

第一类,四个班级都去甲工厂,此时分配方案只有1种情况;

第二类,有三个班级去甲工厂,剩下的一个班级去另外四个工厂,其分配方案共有4×4=16(种);题型二分配问题C第三类,有两个班级去甲工厂,另外两个班级去其他四个工厂,其分配方案共有6×4×4=96(种);第四类,有一个班级去甲工厂,其他三个班级去另外四个工厂,其分配方案有4×4×4×4=256(种).综上所述,不同的分配方案有1+16+96+256=369(种).法二

(间接法)先计算四个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即:5×5×5×5-4×4×4×4=369(种)方案.选(抽)取与分配问题的常见类型及其解法(1)当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若按对象特征抽取的,则按分类进行.②间接法:去掉限制条件计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.思维升华【训练2】

(1)有4位老师在同一年级的4个班级中各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是(

) A.11 B.10 C.9 D.8

解析法一设四个班级分别是A,B,C,D,它们的老师分别是a,b,c,d,并设a监考的是B,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a监考C,D时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,由分类加法计数原理知共有3+3+3=9(种)不同的安排方法.

法二让a先选,可从B,C,D中选一个,即有3种选法.若选的是B,则b从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,根据分步乘法计数原理知,共有3×3×1×1=9(种)不同安排方法.C(2)从6名志愿者中选4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有(

)A.280种 B.240种

C.180种 D.96种解析由于甲、乙不能从事翻译工作,因此翻译工作从余下的4名志愿者中选1人,有4种选法.后面三项工作的选法有5×4×3种,因此共有4×5×4×3=240(种)选派方案.B【例3】如图所示,要给“创”、“新”、“设”、“计”四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,有多少种不同的涂色方法?题型三涂色问题解“创”、“新”、“设”、“计”四个区域依次涂色,分四步.第1步,涂“创”区域,有3种选择;第2步,涂“新”区域,有2种选择;第3步,涂“设”区域,由于它与“创”、“新”区域颜色不同,有1种选择;第4步,涂“计”区域,由于它与“创”“设”区域颜色不同,有1种选择.所以根据分步乘法计数原理,得不同的涂色方法共有3×2×1×1=6(种).求解涂色(种植)问题一般是直接利用两个计数原理求解,常用方法有:(1)按区域的不同以区域为主分步计数,用分步乘法计数原理分析;(2)以颜色(种植作物)为主分类讨论,适用于“区域、点、线段”问题,用分类加法计数原理分析;(3)对于涂色(立方体)问题将空间问题平面化,转化为平面区域涂色问题.思维升华【训练3】如图所示,一环形花坛分成A,B,C,D四块,现有四种不同的花供选种,要求在每块里种一种花,且相邻的两块种不同的花,则不同的种法种数为(

)A.96 B.84 C.60 D.48解析依次种A,B,C,D4块,当C与A种同一种花时,有4×3×1×3=36(种)种法;当C与A所种的花不同时,有4×3×2×2=48(种)种法.由分类加法计数原理知,不同的种法种数为36+48=84.B1.牢记1个知识点

两个计数原理的区别与联系.2.掌握3种方法

两个计数原理(1)在排数中的应用方法;(2)在涂色问题中的应用方法;(3)在分配问题中的应用方法.

课堂小结分层训练素养提升3

一、选择题1.由数字1,2,3组成的无重复数字的整数中,偶数的个数为(

) A.15 B.12 C.10 D.5

解析分三类,第一类组成一位整数,偶数有1个;第二类组成两位整数,其中偶数有2个;第三类组成3位整数,其中偶数有2个.由分类加法计数原理知共有偶数1+2+2=5(个).D2.甲、乙、丙三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有(

) A.4种 B.5种

C.6种 D.12种

解析若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有3+3=6(种)不同的传法.C3.若三角形的三边长均为正整数,其中一边长为4,另外两边长分别为b,c,且满足b≤4≤c,则这样的三角形有(

) A.10个 B.14个

C.15个 D.21个

解析当b=1时,c=4;当b=2时,c=4,5;当b=3时,c=4,5,6;当b=4时,c=4,5,6,7.故共有1+2+3+4=10(个)这样的三角形.A4.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为(

) A.18 B.16 C.14 D.10

解析分两类:一是以集合M中的元素为横坐标,以集合N中的元素为纵坐标,有3×2=6(个)不同的点,二是以集合N中的元素为横坐标,以集合M中的元素为纵坐标,有4×2=8(个)不同的点,故由分类加法计数原理得共有6+8=14(个)不同的点.C5.有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有(

)AA.4320种 B.2880种C.1440种 D.720种解析第1个区域有6种不同的涂色方法,第2个区域有5种不同的涂色方法,第3个区域有4种不同的涂色方法,第4个区域有3种不同的涂色方法,第5个区域有4种不同的涂色方法,第6个区域有3种不同的涂色方法,根据分步乘法计数原理,共有6×5×4×3×4×3=4320(种)不同的涂色方法.二、填空题6.如图所示为一电路图,则从A到B共有__________条不同的单支线路可通电.8解析按上、中、下三条线路可分为三类:上线路中有3条,中线路中有1条,下线路中有2×2=4(条).根据分类加法计数原理,共有3+1+4=8(条).7.古人用天干、地支来表示年、月、日、时的次序.用天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,用天干的“乙、丁、己、辛、癸”和地支的“丑、卯、巳、未、酉、亥”相配,共可配成__________组.

解析分两类:第一类,由天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,则有5×6=30(组)不同的结果;同理,第二类也有30组不同的结果,共可得到30+30=60(组).608.4名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报法有________种.

解析由于每个同学报哪个运动队没有限制,因此,每个同学都有3种报名方法,4个同学全部报完,才算完成这件事,故共有3×3×3×3=81(种)不同的报法.81三、解答题9.将三个分别标有A,B,C的球随机放入编号为1,2,3,4的四个盒子中.

求:(1)1号盒中无球的不同方法种数; (2)1号盒中有球的不同放法种数.

解(1)1号盒中无球即A,B,C三球只能放入2,3,4号盒子中,有33=27(种)放法; (2)1号盒中有球可分三类:第一类是1号盒中有一个球,共有3×32=27(种)放法,第二类是1号盒中有两个球,共有3×3=9(种)放法,第三类是1号盒中有三个球,有1种放法.共有27+9+1=37(种)放法.10.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?解分两类完成.第1类,当A或B中有一个为0时,表示的直线为x=0或y=0,共2条.第2类,当A,B都不为0时,直线Ax+By=0被确定需分两步完成.第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步乘法计数原理知,共可确定4×3=12(条)直线.由分类加法计数原理知,方程所表示的不同直线共有2+12=14(条).11.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同.在所有这些方程所表示的曲线中,不同的抛物线共有(

) A.60条 B.62条

C.71条 D.80条

解析利用两个计数原理结合分类讨论思想求解.

当a=1时:若c=0,则b2有2个取值,共2条抛物线;若c≠0,则c有4个取值,b2有2个取值,共有2×4=8(条)抛物线. ∴a=1时,共有2+8=10(条)抛物线.B当a=2时:若c=0,则b2有3个取值,共有3条抛物线;若c≠0,当c取1时,b2有2个取值,共有2条抛物线;当c取-2时,b2有2个取值,共有2条抛物线;当c取3时,b2有3个取值,共有3条抛物线;当c取-3时,b2有3个取值,共有3条抛物线.∴a=2时,共有3+2+2+3+3=13(条)抛物线.同理,a=-2,-3,3时,共有抛物线3×13=39(条).由分类加法计数原理知,共有抛物线39+13+10=62(条).12.现有某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则不同的选取种数为______,m,n都取到奇数的概率为__________.6313.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选出1人,求A1被选中且B1未被选中的概率.解从这5名男同学和3名女同学中各随机选出1人,其所有可能的结果有5×3=15(种).根据题意,知这些基本事件的出现是等可能的.事件“A1被选中且B1未被选中”所包含的基本事件有{A1,B2},{A1,B3},共2个.14.如图,用四种不同的颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色

,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有多少种?解

先涂A,D,E三个点,共有4×3×2=24(种)涂法,然后再按B,C,F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8(种)涂法;另一类是B与E或D不同色,共有1×(1×1+1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论