版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某人沿着坡度为1:2.4的斜坡向上前进了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m2.若点(x1,y1),(x2,y2)都是反比例函数图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2 B.x1<x2 C.y随x的增大而减小 D.两点有可能在同一象限3.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC︰BC=3︰4,则BD︰CE为()A.5︰3 B.4︰3 C.︰2 D.2︰4.若.则下列式子正确的是()A. B. C. D.5.下列运算正确的是()A.x6÷x3=x2 B.(x3)2=x5 C. D.6.如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形 B.矩形 C.菱形 D.正方形7.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π8.某汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1200牛时,汽车的速度为()A.180千米/时 B.144千米/时 C.50千米/时 D.40千米/时9.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(
)A.8S B.9S C.10S D.11S10.抛物线y=x2+2x-2最低点坐标是()A.(2,-2) B.(1,-2) C.(1,-3) D.(-1,-3)二、填空题(每小题3分,共24分)11.绕着A点旋转后得到,若,,则旋转角等于_____.12.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留)13.如图,在轴的正半轴上依次截取……,过点、、、、……,分别作轴的垂线与反比例函数的图象相交于点、、、、……,得直角三角形、,,,……,并设其面积分别为、、、、……,则__.的整数).14.点关于原点的对称点的坐标为________.15.若关于的一元二次方程没有实数根,则的取值范围是__________.16.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.18.如图,在圆中,是弦,点是劣弧的中点,联结,平分,联结、,那么__________度.三、解答题(共66分)19.(10分)如图,已知,点、坐标分别为、.(1)把绕原点顺时针旋转得,画出旋转后的;(2)在(1)的条件下,求点旋转到点经过的路径的长.20.(6分)如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接AD,BD.求四边形ABCD的面积.21.(6分)如图1,抛物线与x轴交于A、B两点(点A在x轴的负半轴),与y轴交于点C.抛物线的对称轴交抛物线于点D,交x轴于点E,点P是线段DE上一动点(点P不与DE两端点重合),连接PC、PO.(1)求抛物线的解析式和对称轴;(1)求∠DAO的度数和△PCO的面积;(3)在图1中,连接PA,点Q是PA的中点.过点P作PF⊥AD于点F,连接QE、QF、EF得到图1.试探究:是否存在点P,使得,若存在,请求点P的坐标;若不存在,请说明理由.22.(8分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系.(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.23.(8分)用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,“幸福”小区为了方便住在A区、B区、和C区的居民(A区、B区、和C区之间均有小路连接),要在小区内设立物业管理处P.如果想使这个物业管理处P到A区、B区、和C区的距离相等,应将它建在什么位置?请在图中作出点P.24.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).25.(10分)一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表摸球总次数“和为”出现的频数“和为”出现的频率解答下列问题:如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.26.(10分)已知:二次函数,求证:无论为任何实数,该二次函数的图象与轴都在两个交点;
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.【详解】解:如图,根据题意知AB=130米,tanB==1:2.4,设AC=x,则BC=2.4x,则x2+(2.4x)2=1302,解得x=50(负值舍去),即他的高度上升了50m,故选A.【点睛】本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.2、B【解析】根据函数的解析式得出反比例函数y的图象在第二、四象限,求出点(x1,y1)在第四象限的图象上,点(x1,y1)在第二象限的图象上,再逐个判断即可.【详解】反比例函数y的图象在第二、四象限.∵y1<0<y1,∴点(x1,y1)在第四象限的图象上,点(x1,y1)在第二象限的图象上,∴x1>0>x1.A.x1>x1,故本选项正确;B.x1<x1,故本选项错误;C.在每一个象限内,y随x的增大而增大,故本选项错误;D.点(x1,y1)在第四象限的图象上,点(x1,y1)在第二象限的图象上,故本选项错误.故选A.【点睛】本题考查了反比例函数的图象和性质的应用,能熟记反比例函数的性质是解答此题的关键.3、A【解析】因为∠ACB=90°,AC︰BC=3︰4,则因为∠ACB=∠AED=90°,∠ABC=∠ADE,得△ABC△ADE,得,,则,.故选A.4、A【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x-7y=0,∴2x=7y.A.,则2x=7y,故此选项正确;B.,则xy=14,故此选项错误;C.,则2y=7x,故此选项错误;D.,则7x=2y,故此选项错误.故选A.【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.5、D【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A.x6÷x3=x3,故本选项不合题意;B.(x3)2=x6,故本选项不合题意;C.,故本选项不合题意;D.,正确,故本选项符合题意.故选:D.【点睛】本题主要考查了算术平方根、立方根、同底数幂的除法以及幂的乘方与积的乘方,熟记修改运算法则是解答本题的关键.6、C【详解】∵在ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∵在△AFO和△CEO中,∠AFO=∠CEO,∠FOA=∠EOC,AO=CO,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形,故选C.7、B【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.8、C【分析】根据图像可知为反比例函数,图像过点(3000,20),代入(k),即可求出反比例函数的解析式,再求出牵引力为1200牛时,汽车的速度即可.【详解】设函数为(k),代入(3000,20),得,得k=60000,∴,∴牵引力为1200牛时,汽车的速度为=50千米/时,故选C.【点睛】此题主要考查反比例函数的应用,解题的关键是找到已知条件求出反比例函数的解析式.9、B【解析】分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积.详解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴又∵E是AD中点,∴∴DE:BC=DF:BF=1:2,∴∴又∵DF:BF=1:2,∴∴∴四边形ABCE的面积=9S,故选B.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.10、D【分析】利用配方法把抛物线的一般式转化为顶点式,再写出顶点坐标即可.【详解】∵,且,
∴最低点(顶点)坐标是.
故选:D.【点睛】此题考查利用顶点式求函数的顶点坐标,注意根据函数的特点灵活运用适当的方法解决问题.二、填空题(每小题3分,共24分)11、50°或210°【分析】首先根据题意作图,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【详解】解:∵∠BAC′=130°,∠BAC=80°,
∴如图1,∠CAC′=∠BAC′-∠BAC=50°,
如图2,∠CAC′=∠BAC′+∠BAC=210°.
∴旋转角等于50°或210°.
故答案为:50°或210°.【点睛】本题考查了旋转的性质.注意掌握数形结合思想与分类讨论思想的应用.12、【解析】根据菱形的性质得到AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°∴AO=AB=1,由勾股定理得,又∵AC=2,BD=2,∴调影部分的面积为:故答案为:【点睛】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.13、【解析】根据反比例函数y=中k的几何意义再结合图象即可解答.【详解】∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴=1,=1,∵O=,∴==,同理可得,=1====.故答案是:.【点睛】本题考查反比例函数系数k的几何意义.14、【分析】根据点关于原点对称,横纵坐标都变号,即可得出答案.【详解】根据对称变换规律,将P点的横纵坐标都变号后可得点,故答案为.【点睛】本题考查坐标系中点的对称变换,熟记变换口诀“关于谁对称,谁不变,另一个变号;关于原点对称,两个都变号”.15、【分析】根据根判别式可得出关于的一元一次不等式组,解不等式组即可得出结论.【详解】由于关于一元二次方程没有实数根,∵,,,∴,解得:.故答案为:.【点睛】本题考查了一元二次方程为常数)的根的判别式.当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当0,方程没有实数根.16、【分析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高.【详解】圆心角为120°,半径为6cm的扇形的弧长为4cm∴圆锥的底面半径为2,故圆锥的高为=4cm【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.17、【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE为Rt△ACB斜边的中线,∴,在△CEM中,,即,∴CM的最大值为.故答案为:.【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.18、120【分析】连接AC,证明△AOC是等边三角形,得出的度数.【详解】连接AC∵点C是的中点∴∵,∴AB平分OC∴AB是线段OC的垂直平分线∴∵∴∴△AOC是等边三角形∴∴∴故答案为.【点睛】本题考查了等边三角形的判定定理,从而得出目标角的度数.三、解答题(共66分)19、(1)答案见解析;(2).【分析】(1)根据题意画出图形即可;(2)求出OA的长,再根据弧长公式即可得出结论.【详解】(1)如图所示,(2)由(1)图可得,,∴【点睛】本题考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.20、S四边形ADBC=49(cm2).【分析】根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,根据勾股定理求出AD、BD、AC的值,再根据S四边形ADBC=S△ABD+S△ABC进行计算即可.【详解】∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,则AD=BD=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).【点睛】本题考查了圆周角定理、三角形的面积等,正确求出相关的数值是解题的关键.21、(1);;(1)45°;;(3)存在,【分析】(1)把C点坐标代入解出解析式,再根据对称轴即可解出.(1)把A、D、E、C点坐标求出后,因为AE=DE,且DE⊥AE,所以∠DAO=,P点y轴的距离等于OE,即可算出△POC的面积.(3)设出PE=m,根据勾股定理用m表示出PA,根据直角三角形斜边中线是斜边的一半可以证明AQ=FQ=QE=QP,所以△AQF和△AQE都是等腰三角形,又因为∠DAO=,再根据角的关系可以证明△FEQ是等腰直角三角形,再根据,解出m即可.可以通过圆的性质,来判断△FEQ是等腰直角三角形,再根据建立等式算出m即可.【详解】解:(1)将C代入求得a=,∴抛物线的解析式为;由可求抛物线的对称轴为直线(1)由抛物线可求一些点的坐标:∴AE=DE=3,又DE⊥AE∴△ADE是等腰直角三角形∴∠DAO=45°作PM⊥y轴于M,在对称轴上的点P的横坐标为-1,∴PM=1,又OP=∴△OPC的面积为(3)解:存在点满足题目条件.解法一:设点P的纵坐标为m(0<m<3),则PE=m,∵点Q是PA的中点,∴QE、QF分别是Rt△PAE、Rt△PAF的公共斜边PA上的中线∴QE=QF=AQ=PQ=∵QE=AQ,QF=AQ∴∠EAQ=∠AEQ,∠FAQ=∠AFQ∴∠EQP=1∠EAQ,∠FQP=1∠FAQ∴∠EQF=1(∠EAQ+∠FAQ)=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面积为由得解得∵0<m<3∴∴在抛物线对称轴上的点P的坐标为解法二:设点P的纵坐标为m(0<m<3),则PE=m,∵点Q是PA的中点,∴QE、QF分别是Rt△PAE、Rt△PAF的公共斜边PA上的中线∴QE=QF=AQ=PQ=∴四边形PEAF内接于半径为QE的⊙Q,∴∠EQF=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面积为由得解得∵0<m<3∴∴在抛物线对称轴上的点P的坐标为【点睛】本题考查了用待定系数法求一元二次函数解析式,对称轴,直角三角形的性质,及一元二次函数与三角形综合点存在性的问题,熟练运用相关知识点是解本题的关键.22、(1)CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC,证明详见解析;(3).【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,再根据直角三角形斜边上中线的性质即可得到OC的长.【详解】(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC;理由:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF∴BC+CD=CF,∴CF﹣CD=BC;(3)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵正方形ADEF的边长4且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴Rt△CDF中,OC=DF=×=.【点睛】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年煤炭内河运输船舶船舶交易与财务审计合同3篇
- 高中信息技术 Flash动画制作教学实录 粤教版选修2
- 财务会计实习报告合集7篇
- 银行卡业务管理办法(人民银行1999)
- 周五早安问候语
- 毕业实习协议书15篇
- (2024年秋季版)七年级道德与法治上册 10.2 活出生命的精彩教学实录1 新人教版
- 浙江省历史与社会九年级人教版上册 3.1.4 抗日战争的胜利 教学实录
- 三年级品德与社会上册 给自己颁奖(二)教学实录 泰山版
- 三年级语文下册 第三单元 9古诗三首《元日》教学实录 新人教版
- 2024-2030年撰写:中国汽车半轴行业发展趋势及竞争调研分析报告
- 北疆文化全媒体传播体系的构建与实践
- 低血糖晕厥应急演练预案
- 四川省成都市某中学2024-2025学年高一年级上册11月期中考试 英语试卷(含答案)
- 2025届福建省厦门市重点中学高三第二次联考语文试卷含解析
- OpenCV计算机视觉基础教程(Python版)教学教案
- 2024年度二人合伙光伏发电项目投资合同3篇
- 《涉江采芙蓉》 课件高中语文统编版必修上册
- 管道护理小组工作总结
- 幼儿园绘本故事《三只小猪盖房子》教学课件全文
- 北京市房山区2023-2024学年九年级上学期期末语文试题(解析版)
评论
0/150
提交评论