2022-2023学年湖南省湘潭市九年级数学第一学期期末联考试题含解析_第1页
2022-2023学年湖南省湘潭市九年级数学第一学期期末联考试题含解析_第2页
2022-2023学年湖南省湘潭市九年级数学第一学期期末联考试题含解析_第3页
2022-2023学年湖南省湘潭市九年级数学第一学期期末联考试题含解析_第4页
2022-2023学年湖南省湘潭市九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180° B.经过有交通信号的路口,遇到红灯C.太阳从东方升起 D.任意一个五边形的外角和等于540°2.下列方程中,是关于的一元二次方程的是()A. B. C. D.3.下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2﹣2=(x+3)2C.x2+﹣5=0 D.x2=04.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明()A.AB=AD且AC⊥BD B.AB=AD且AC=BD C.∠A=∠B且AC=BD D.AC和BD互相垂直平分5.如图,在中,点分别在边上,且,则下列结论不一定成立的是()A. B. C. D.6.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.7.顺次连接平行四边形四边的中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形8.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.9.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件.如果全组共有x名同学,则根据题意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×210.抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=211.如图,在正方形网格中,已知的三个顶点均在格点上,则()A.2 B. C. D.12.两个相似三角形,其面积比为16:9,则其相似比为()A.16:9 B.4:3 C.9:16 D.3:4二、填空题(每题4分,共24分)13.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2km,从A测得灯塔P在北偏东60°的方向,从B测得灯塔P在北偏东45°的方向,则灯塔P到海岸线l的距离为_____km.14.如图,的半径为,双曲线的关系式分别为和,则阴影部分的面积是__________.15.已知实数,是方程的两根,则的值为________.16.定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_______.17.如图,矩形中,,,以为圆心,为半径画弧,交延长线于点,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_________.18.如图,△ABC的外心的坐标是____.三、解答题(共78分)19.(8分)如图,已知反比例函数(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:∆ACB∽∆NOM;(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.20.(8分)在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.(1)画树状图或列表,写出点P所有可能的坐标;(2)求出点P在以原点为圆心,5为半径的圆上的概率.21.(8分)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.22.(10分)近日,国产航母山东舰成为了新晋网红,作为我国本世纪建造的第一艘真正意义上的国产航母,承载了我们太多期盼,促使我国在伟大复兴路上加速前行如图,山东舰在一次测试中,巡航到海岛A北偏东60°方向P处,发现在海岛A正东方向有一可疑船只B正沿BA方向行驶。山东舰经测量得出:可疑船只在P处南偏东45°方向,距P处海里。山东舰立即从P沿南偏西30°方向驶出,刚好在C处成功拦截可疑船只。求被拦截时,可疑船只距海岛A还有多少海里?(,结果精确到0.1海里)23.(10分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.24.(10分)如图,内接于,直径交于点,延长至点,使,且,连接并延长交过点的切线于点,且满足,连接.(1)求证:;(2)求证:是的切线.25.(12分)如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.26.如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,①判断⊙D与OA的位置关系,并证明你的结论.②通过上述证明,你还能得出哪些等量关系?

参考答案一、选择题(每题4分,共48分)1、B【解析】根据事件发生的可能性大小判断相应事件的类型.【详解】A.任意画一个三角形,其内角和为180°是必然事件;B.经过有交通信号的路口,遇到红灯是随机事件;C.太阳从东方升起是必然事件;D.任意一个五边形的外角和等于540°是不可能事件.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【解析】只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程.【详解】解:A选项,缺少a≠0条件,不是一元二次方程;B选项,分母上有未知数,是分式方程,不是一元二次方程;C选项,经整理后得x2+x=0,是关于x的一元二次方程;D选项,经整理后是一元一次方程,不是一元二次方程;故选择C.【点睛】本题考查了一元二次方程的定义.3、D【解析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.逐一判断即可.【详解】解:A、当a=0时,ax1+bx+c=0,不是一元二次方程;B、x1﹣1=(x+3)1整理得,6x+11=0,不是一元二次方程;C、,不是整式方程,不是一元二次方程;D、x1=0,是一元二次方程;故选:D.【点睛】本题主要考查一元二次方程的定义,正确把握一元二次方程的定义是解题关键.4、B【解析】解:A.根据有一组邻边相等的平行四边形是菱形,或者对角线互相垂直的平行四边形是菱形,所以不能判断平行四边形ABCD是正方形;B.根据邻边相等的平行四边形是菱形,对角线相等的平行四边形为矩形,所以能判断四边形ABCD是正方形;C.根据一组邻角相等的平行四边形是矩形,对角线相等的平行四边形也是矩形,即只能证明四边形ABCD是矩形,不能判断四边形ABCD是正方形;D.根据对角线互相垂直的平行四边形是菱形,对角线互相平分的四边形是平行四边形,所以不能判断四边形ABCD是正方形.故选B.5、B【分析】根据相似三角形平行线分线段成比例的性质,分别判定即可.【详解】∵∴∠A=∠CEF,∠ADE=∠ABC,∠CFE=∠ABC,,∴∠ADE=∠CFE,,C选项正确;∴△ADE∽△EFC∴,A选项正确;又∵∴,D选项正确;∵∴不成立故答案为B.【点睛】此题主要考查相似三角形平行线分线段成比例的运用,熟练掌握,即可解题.6、B【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中球的总数为:2+3=5,有2个黄球,∴从袋子中随机摸出一个球,它是黄球的概率为:.故选B.7、D【解析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.8、A【解析】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180°后图形能与自身重合,只有A图符合题中条件.故应选A.9、C【解析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键.10、B【分析】根据抛物线的对称轴公式:计算即可.【详解】解:抛物线y=x2+2x+3的对称轴是直线故选B.【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.11、B【分析】过C点作CD⊥AB,交AB的延长线于D点,则CD=1,AC=,在直角三角形ACD中即可求得的值.【详解】过C点作CD⊥AB,交AB的延长线于D点,则CD=1,AC=在直角三角形ACD中故选:B【点睛】本题考查的是网格中的锐角三角函数,关键是创造直角三角形,尽可能的把直角三角形的顶点放在格点.12、B【分析】根据两个相似多边形的面积比为16:9,面积之比等于相似比的平方.【详解】根据题意得:=.即这两个相似多边形的相似比为4:1.故选:B.【点睛】本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.二、填空题(每题4分,共24分)13、【分析】作PD⊥AB,设PD=x,根据∠CBP=∠BPD=45°知BD=PD=x、AD=AB+BD=2+x,由sin∠PAD=列出关于x的方程,解之可得答案.【详解】如图所示,过点P作PD⊥AB,交AB延长线于点D,设PD=x,∵∠PBD=∠BPD=45°,∴BD=PD=x,又∵AB=2,∴AD=AB+BD=2+x,∵∠PAD=30°,且sin∠PAD=,∴,解得:x=1+,即船P离海岸线l的距离为(1+)km,故答案为1+.【点睛】本题主要考查解直角三角形的应用-方向角问题,解题的关键是根据题意构建合适的直角三角形及三角函数的定义及其应用.14、2π【分析】根据反比例函数的对称性可得图中阴影部分的面积为半圆面积,进而可得答案.【详解】解:双曲线和的图象关于x轴对称,根据图形的对称性,把第三象限和第四象限的阴影部分的面积拼到第二和第一象限中的阴影中,可得阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以S阴影=.故答案为:2π.【点睛】本题考查的是反比例函数和阴影面积的计算,题目中的两条双曲线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180°,半径为2的扇形的面积,这是解题的关键.15、-1【解析】先根据根与系数的关系得到a+b=1,ab=﹣1,再利用通分把+变形为,然后利用整体代入的方法计算.【详解】根据题意得:a+b=1,ab=﹣1,所以+==﹣1.故答案为:﹣1.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数关系的公式是关键.16、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,化为一般式即可判定其“特征数”.【详解】由题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为∴这个新函数的“特征数”是故答案为:【点睛】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.17、【分析】阴影部分的面积为扇形BDM的面积加上扇形CDN的面积再减去直角三角形BCD的面积即可.【详解】解:∵,∴根据矩形的性质可得出,∵∴∴利用勾股定理可得出,因此,可得出故答案为:.【点睛】本题考查的知识点是求不规则图形的面积,熟记扇形的面积公式是解此题的关键.18、【解析】试题解析:∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).三、解答题(共78分)19、(1);(2)证明见解析;(3),.【解析】试题分析:(1)把A点坐标代入可得k的值,进而得到函数解析式;(2)根据A、B两点坐标可得AC=4-n,BC=m-1,ON=n,OM=1,则,再根据反比例函数解析式可得=n,则,而,可得,再由∠ACB=∠NOM=90°,可得△ACB∽△NOM;(3)根据△ACB与△NOM的相似比为2可得m-1=2,进而得到m的值,然后可得B点坐标,再利用待定系数法求出AB的解析式即可.试题解析:(1)∵(x>0,k是常数)的图象经过点A(1,4),∴k=4,∴反比例函数解析式为y=;(2)∵点A(1,4),点B(m,n),∴AC=4-n,BC=m-1,ON=n,OM=1,∴,∵B(m,n)在y=上,∴=n,∴,而,∴,∵∠ACB=∠NOM=90°,∴△ACB∽△NOM;(3)∵△ACB与△NOM的相似比为2,∴m-1=2,m=3,∴B(3,),设AB所在直线解析式为y=kx+b,∴,解得,∴AB的解析式为y=-x+.考点:反比例函数综合题.20、(1)列表见解析,P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);(2)【分析】(1)用列表法列举出所有可能出现的情况,注意每一种情况出现的可能性是均等的,(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),由概率公式即可得出答案.【详解】(1)由列表法列举所有可能出现的情况:因此点P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),∴点P在以原点为圆心,5为半径的圆上的概率为.【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,利用这种方法注意每一种情况出现的可能性是均等的.21、(1)y=﹣x2+3x+4;(﹣1,0);(2)P的横坐标为或.(3)点P的坐标为(4,0)或(5,﹣6)或(2,6).【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;(2)利用△AQP∽△AOC得到AQ=4PQ,设P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P点坐标;(3)设P(m,﹣m2+3m+4)(m>),当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=m2﹣3m,证明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,则OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此时P点坐标;当点Q′落在y轴上,易得点A、Q′、P、Q所组成的四边形为正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m得此时P点坐标.【详解】解:(1)把A(0,4),B(4,0)分别代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+3x+4,当y=0时,﹣x2+3x+4=0,解得x1=﹣1,x2=4,∴C(﹣1,0);故答案为y=﹣x2+3x+4;(﹣1,0);(2)∵△AQP∽△AOC,∴,∴,即AQ=4PQ,设P(m,﹣m2+3m+4),∴m=4|4﹣(﹣m2+3m+4|,即4|m2﹣3m|=m,解方程4(m2﹣3m)=m得m1=0(舍去),m2=,此时P点横坐标为;解方程4(m2﹣3m)=﹣m得m1=0(舍去),m2=,此时P点坐标为;综上所述,点P的坐标为(,)或(,);(3)设,当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=4﹣(﹣m2+3m+4)=m2﹣3m,∵△APQ沿AP对折,点Q的对应点为点Q',∴∠AQ′P=∠AQP=90°,AQ′=AQ=m,PQ′=PQ=m2﹣3m,∵∠AQ′O=∠Q′PH,∴Rt△AOQ′∽Rt△Q′HP,∴,即,解得Q′H=4m﹣12,∴OQ′=m﹣(4m﹣12)=12﹣3m,在Rt△AOQ′中,42+(12﹣3m)2=m2,整理得m2﹣9m+20=0,解得m1=4,m2=5,此时P点坐标为(4,0)或(5,﹣6);当点Q′落在y轴上,则点A、Q′、P、Q所组成的四边形为正方形,∴PQ=AQ′,即|m2﹣3m|=m,解方程m2﹣3m=m得m1=0(舍去),m2=4,此时P点坐标为(4,0);解方程m2﹣3m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,6),综上所述,点P的坐标为(4,0)或(5,﹣6)或(2,6)【点睛】本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题的关键是:①熟练掌握待定系数法求函数解析式;②能够熟练掌握相似三角形的判定和性质;③能够熟练掌握一元二次方程的解法;④理解折叠的性质.22、被拦截时,可疑船只距海岛A还有57.7海里.【分析】过点P作于点D,在中,利用等腰直角三角形性质求出PD的长,在中,求出PC的长,再求的.可得.【详解】解:过点P作于点D由题意可知,在中,∴在中,∴又∴∴∴(海里)即被拦截时,可疑船只距海岛A还有57.7海里.【点睛】此题考查了解直角三角形的应用,熟练掌握直角三角形中三角函数的运用是解题的关键.23、(1)见解析;(2)见解析【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)根据HL先证明Rt△BDE≌Rt△DCF,再根据全等三角形对应边相等及切线的性质得出AB=AF,即可得出AB+BE=AC.【详解】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;以及及全等三角形的判断与性质,角平分线的性质等.24、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论