2022-2023学年广东省深圳市文锦中学数学九上期末考试试题含解析_第1页
2022-2023学年广东省深圳市文锦中学数学九上期末考试试题含解析_第2页
2022-2023学年广东省深圳市文锦中学数学九上期末考试试题含解析_第3页
2022-2023学年广东省深圳市文锦中学数学九上期末考试试题含解析_第4页
2022-2023学年广东省深圳市文锦中学数学九上期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()A. B.C. D.2.在Rt△ABC中,∠C=90°,BC=4,sinA=,则AC=()A.3 B.4 C.5 D.63.池塘中放养了鲤鱼2000条,鲢鱼若干条,在几次随机捕捞中,共捕到鲤鱼200条,鲢鱼300条,估计池塘中原来放养了鲢鱼()A.10000条 B.2000条 C.3000条 D.4000条4.某商场将进货价为45元的某种服装以65元售出,平均每天可售30件,为了尽快减少库存,商场决定采取适当的降价措施,调查发现:每件降价1元,则每天可多售5件,如果每天要盈利800元,每件应降价()A.12元 B.10元 C.11元 D.9元5.在Rt△ABC中,∠C=90°.若AC=2BC,则sinA的值是()A. B. C. D.26.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是2cm,则这个正六边形的周长是()A.12 B.6 C.36 D.127.已知反比例函数,下列结论中不正确的是()A.图象经过点(-1,-1) B.图象在第一、三象限C.当时, D.当时,y随着x的增大而增大8.如图,抛物线的对称轴为,且过点,有下列结论:①>0;②>0;③;④>0.其中正确的结论是()A.①③ B.①④ C.①② D.②④9.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m10.当x=1时,代数式2ax2+bx的值为5,当x=2时,代数式ax2+bx﹣3的值为()A.﹣ B.2 C.7 D.1711.已知点都在反比例函数为常数,且)的图象上,则与的大小关系是()A. B.C. D.12.若关于x的一元二次方程有实数根,则k的取值范围是()A. B. C.且 D.且二、填空题(每题4分,共24分)13.若m+n=3,则2m2+4mn+2n2-6的值为________.14.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=______.15.中,如果锐角满足,则_________度16.关于的方程一个根是1,则它的另一个根为________.17.若AB是⊙O的直径,AC是弦,OD⊥AC于点D,若OD=4,则BC=_____.18.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,则道路的宽为.三、解答题(共78分)19.(8分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,她在地面上竖直立一根2米长的标杆CD,某一时刻测得其影长DE=1.2米,此时旗杆AB在阳光下的投影BF=4.8米,AB⊥BD,CD⊥BD.请你根据相关信息,求旗杆AB的高.20.(8分)在一次数学兴趣小组活动中,阳光和乐观两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则阳光获胜,反之则乐观获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)游戏对双方公平吗?请说明理由.21.(8分)关于的一元二次方程(1)若方程的一个根为1,求方程的另一个根和的值(2)求证:不论取何实数,方程总有两个不相等的实数根.22.(10分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.23.(10分)已知关于x的一元二次方程(k﹣1)x2+4x+1=1.(1)若此方程的一个根为﹣1,求k的值;(2)若此一元二次方程有实数根,求k的取值范围.24.(10分)如图,在平面直角坐标系中,已知矩形的顶点,过点的双曲线与矩形的边交于点.(1)求双曲线的解析式以及点的坐标;.(2)若点是抛物线的顶点;①当双曲线过点时,求顶点的坐标;②直接写出当抛物线过点时,该抛物线与矩形公共点的个数以及此时的值.25.(12分)如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,D是BC边上的一点,OC:CD=5:3,DB=1.反比例函数y=(k≠0)在第一象限内的图象经过点D,交AB于点E,AE:BE=1:2.(1)求这个反比例函数的表达式;(2)动点P在矩形OABC内,且满足S△PAO=S四边形OABC.①若点P在这个反比例函数的图象上,求点P的坐标;②若点Q是平面内一点使得以A、B、P、Q为顶点的四边形是菱形求点Q的坐标.26.如图,抛物线经过点A(1,0),B(4,0)与轴交于点C.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键.2、A【分析】先根据正弦的定义得到sinA==,则可计算出AB=5,然后利用勾股定理计算AC的长.【详解】如图,在Rt△ACB中,∵sinA=,∴,∴AB=5,∴AC==1.故选:A.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.3、C【分析】根据题意求出鲤鱼与鲢鱼的比值,进而利用池塘中放养了鲤鱼2000条除以鲤鱼与鲢鱼的比值即可估计池塘中原来放养了鲢鱼的条数.【详解】解:由题意可知鲤鱼与鲢鱼的比值为:,所以池塘中原来放养了鲢鱼:(条).故选:C.【点睛】本题考查的是通过样本去估计总体,熟练掌握通过样本去估计总体的方法,只需将样本“成比例地放大”为总体即可.4、B【分析】设应降价x元,根据题意列写方程并求解可得答案.【详解】设应降价x元则根据题意,等量方程为:(65-x-45)(30+5x)=800解得:x=4或x=10∵要尽快较少库存,∴x=4舍去故选:B.【点睛】本题考查一元二次方程利润问题的应用,需要注意最后有2个解,需要按照题干要求舍去其中一个解.5、C【分析】设BC=x,可得AC=2x,Rt△ABC中利用勾股定理算出AB=x,然后利用三角函数在直角三角形中的定义,可算出sinA的值.【详解】解:由AC=2BC,设BC=x,则AC=2x,

∵Rt△ABC中,∠C=90°,

∴根据勾股定理,得AB=.

因此,sinA=.

故选:C.【点睛】本题已知直角三角形的两条直角边的关系,求角A的正弦之值.着重考查了勾股定理、三角函数的定义等知识,属于基础题.6、D【分析】由正六边形的性质证出△AOB是等边三角形,由等边三角形的性质得出AB=OA,即可得出答案【详解】设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等边三角形,∴AB=OA=2cm,∴正六边形ABCDEF的周长=6AB=12cm.故选D【点睛】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB是等边三角形是解题关键.7、D【解析】根据反比例函数的性质,利用排除法求解.【详解】解:A、x=-1,y==-1,∴图象经过点(-1,-1),正确;B、∵k=1>0,∴图象在第一、三象限,正确;C、∵k=1>0,∴图象在第一象限内y随x的增大而减小,∴当x>1时,0<y<1,正确;D、应为当x<0时,y随着x的增大而减小,错误.故选:D.【点睛】本题考查了反比例函数的性质,当k>0时,函数图象在第一、三象限,在每个象限内,y的值随x的值的增大而减小.8、C【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a<0,

根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,

根据抛物线与y轴的交点在正半轴可得:c>0,

∴abc>0,故①正确;

直线x=-1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以-=-1,可得b=2a,

a-2b+4c=a-4a+4c=-3a+4c,

∵a<0,

∴-3a>0,

∴-3a+4c>0,

即a-2b+4c>0,故②正确;

∵b=2a,a+b+c<0,

∴2a+b≠0,故③错误;

∵b=2a,a+b+c<0,

∴b+b+c<0,

即3b+2c<0,故④错误;

故选:C.【点睛】此题考查二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.9、C【分析】迎水坡AB的坡比为3:4得出,再根据BC=6m得出AC的值,再根据勾股定理求解即可.【详解】由题意得∴∴故选:C.【点睛】本题考查解直角三角形的应用,把坡比转化为三角函数值是关键.10、C【解析】直接把x=1代入进而得出2a+b=5,再把x=2代入ax2+bx﹣3,即可求出答案.【详解】∵当x=1时,代数式2ax2+bx的值为5,∴2a+b=5,∴当x=2时,代数式ax2+bx﹣3=4a+2b﹣3=2(2a+b)﹣3=2×5﹣3=1.故选:C.【点睛】本题主要考查求代数式的值,整体思想方法的应用,是解题的关键.11、B【分析】由m2>0可得-m2<0,根据反比例函数的性质可得的图象在二、四象限,在各象限内,y随x的增大而增大,根据各点所在象限及反比例函数的增减性即可得答案.【详解】∵m为常数,,∴m2>0,∴-m2<0,∴反比例函数的图象在二、四象限,在各象限内,y随x的增大而增大,∵-2<-1<0,1>0,∴0<y1<y2,y3<0,∴y3<y1<y2,故选:B.【点睛】本题考查反比例函数的性质,对于反比例函数y=(k≠0),当k>0时,函数图象在一、三象限,在各象限,y随x的增大而减小;当k<0时,函数图象在二、四象限,在各象限,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.12、C【分析】一元二次方程有实数根,则根的判别式≥1,且k≠1,据此列不等式求解.【详解】根据题意,得:=1-16≥1且≠1,解得:且≠1.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意≠1.二、填空题(每题4分,共24分)13、1【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=1.14、2016【解析】由题意可得,,,∵,为方程的个根,∴,,∴.15、【分析】根据绝对值与偶数次幂的非负性,可得且,进而求出∠A,∠B的值,即可得到答案.【详解】∵,∴且,∴且,∴∠A=45°,∠B=30°,∵在中,,∴105°.故答案是:105°.【点睛】本题主要考查绝对值与偶数次幂的非负性,特殊三角函数以及三角形内角和定理,掌握绝对值与偶数次幂的非负性,是解题的关键.16、1【分析】利用一元二次方程根与系数的关系,即可得出答案.【详解】由一元二次方程根与系数的关系可知,∵关于的方程一个根是1,∴它的另一个根为1,故答案为:1.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.17、1【分析】由OD⊥AC于点D,根据垂径定理得到AD=CD,即D为AC的中点,则OD为△ABC的中位线,根据三角形中位线性质得到OD=BC,然后把OD=4代入计算即可.【详解】∵OD⊥AC于点D,∴AD=CD,即D为AC的中点,∵AB是⊙O的直径,∴点O为AB的中点,∴OD为△ABC的中位线,∴OD=BC,∴BC=2OD=2×4=1.故答案为:1.【点睛】本题考查了三角形中位线定理以及垂径定理的运用.熟记和圆有关的各种性质定理是解题的关键.18、2m【解析】试题分析:本题考查了一元二次方程的应用,这类题目体现了数形结合的思想,如图,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.还要注意根据题意考虑根的合理性,从而确定根的取舍.本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32-x)(20-x)米2,进而即可列出方程,求出答案.试题解析:解:设道路宽为x米(32-x)(20-x)=540解得:x1=2,x2=50(不合题意,舍去)∴x=2答:设道路宽为2米考点:1、一元二次方程的应用;2、数形结合的思想.三、解答题(共78分)19、旗杆AB的高为8m.【分析】证明△ABF∽△CDE,然后利用相似比计算AB的长.【详解】∵AB⊥BD,CD⊥BD,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴=,即,∴AB=8(m).答:旗杆AB的高为8m.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.20、(1)见解析,两数和共有12种等可能结果;(2)游戏对双方公平,见解析【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况数,再根据概率公式分别求出阳光和乐观获胜的概率,然后进行比较即可得出答案.【详解】解:(1)根据题意列表如下:678939101112410111213511121314可见,两数和共有12种等可能结果;(2)∵两数和共有12种等可能的情况,其中和小于12的情况有6种,∴阳光获胜的概率为∴乐观获胜的概率是,∵=,∴游戏对双方公平.【点睛】解决游戏公平问题的关键在于分析事件发生的可能性,即比较游戏双方获胜的概率是否相等,若概率相等,则游戏公平,否则不公平.21、(1),另一个根是;(2)详见解析.【分析】(1)代入x=1求出m值,从而得出方程,解方程即可;

(2)根据方程的系数结合根的判别式,即可得出△>0,由此可证出:不论m取何实数,此方程都有两个不相等的实数根.【详解】解:(1)把代入原方程得解得:当时,原方程为解得:∴方程的另一个根是(2)证明:∵∴∴不论取何实数,此方程都有两个不相等的实数根.【点睛】本题考查了根的判别式以及一元二次方程的解,由判别式的符号得到方程根的情况是解题的关键.22、(1);(2)这个游戏不公平,理由见解析.【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=,P(乙胜)=.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23、(2);(2)且.【分析】(2)把x=﹣2代入原方程求k值;(2)一元二次方程的判别式是非负数,且二次项系数不等于2.【详解】解:(2)将x=﹣2代入一元二次方程(k﹣2)x2+4x+2=2得,(k﹣2)﹣4+2=2,解得k=4;(2)∵若一元二次方程(k﹣2)x2+4x+2=2有实数根,∴△=26﹣4(k﹣2)≥2,且k﹣2≠2解得k≤5且k﹣2≠2,即k的取值范围是k≤5且k≠2.24、(1),;(2)①;②三个,【分析】(1)将C点坐标代入求得k的值即可求得反比例函数解析式,将代入所求解析式求得x的值即可求得E点坐标;(2)①将抛物线化为顶点式,可求得P点的横坐标,再根据双曲线解析式即可求得P点坐标;②根据B点为函数与y轴的交点可求得t的值和函数解析式,再根据函数的对称轴,与x轴的交点坐标即可求得抛物线与矩形公共点的个数.【详解】解:(1)把点代入,得,∴把代入,得,∴;(2)①∵抛物线∴顶点的横坐标,∵顶点在双曲线上,∴,∴顶点,②当抛物线过点时,,解得,抛物线解析式为,故函数的顶点坐标为,对称轴为,与x轴的交点坐标分别为所以它与矩形在线段BD上相交于和,在线段AB上相交于,即它与矩形有三个公共点,此时.【点睛】本题考查待定系数法求反比例函数解析式和求二次函数解析式,二次函数的性质.在求函数解析式时一般该函数有几个未知的常量就需要代入几个点的坐标,本题(2)(3)中熟练掌握二次函数一般式,交点式,顶点式三种表达式之间的互相转化是解决此题的关键.25、(1)y=;(2)①(,4);②(1,3)或(3﹣2,﹣1).【分析】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n),利用反比例函数图像上的点的坐标特征可求出m的值,之后进一步求出n的值,然后进一步求解即可;(2)根据三角形的面积公式与矩形的面积公式结合S△PAO=S四边形OABC即可进一步求出P的纵坐标.①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;②由点A,B的坐标及点P的总坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,4),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用两点间的距离公式可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用两点间的距离公式可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.【详解】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n).∵点D,E在反比例函数y=(k≠0)的图象上,∴k=mn=(m﹣1)n,∴m=3.∵OC:CD=5:3,∴n:(m﹣1)=5:3,∴n=5,∴k=mn=×3×5=15,∴反比例函数的表达式为y=.(2)∵S△PAO=S四边形OABC,∴OA∙yP=OA∙OC,∴yP=OC=4.当y=4时,=4,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,4).②由(1)可知:点A的坐标为(3,0),点B的坐标为(3,5),∵yP=4,yA+yB=5,∴,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(3﹣t)2+(4﹣0)2=52,解得:t1=1,t2=12(舍去),∴点P1的坐标为(1,4).又∵P1Q1=AB=5,∴点Q1的坐标为(1,3);(ii)当BP=AB时,(3﹣t)2+(5﹣4)2=52,解得:t3=3﹣2,t4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论