福建省邵武七中2022-2023学年数学高三第一学期期末质量检测试题含解析_第1页
福建省邵武七中2022-2023学年数学高三第一学期期末质量检测试题含解析_第2页
福建省邵武七中2022-2023学年数学高三第一学期期末质量检测试题含解析_第3页
福建省邵武七中2022-2023学年数学高三第一学期期末质量检测试题含解析_第4页
福建省邵武七中2022-2023学年数学高三第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设i为数单位,为z的共轭复数,若,则()A. B. C. D.2.已知复数满足,其中为虚数单位,则().A. B. C. D.3.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A. B.C. D.4.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.5.数列的通项公式为.则“”是“为递增数列”的()条件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要6.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.7.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.8.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8 B.9 C.10 D.119.若复数满足,则()A. B. C. D.10.复数的虚部为()A. B. C.2 D.11.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或 B.或 C.或 D.12.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论:①的值域为;②;③;④其中正确的结论是_______(写出所有正确的结论的序号)14.已知函数的最小值为2,则_________.15.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.16.已知数列的前项和为,且成等差数列,,数列的前项和为,则满足的最小正整数的值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.18.(12分)已知抛物线,直线与交于,两点,且.(1)求的值;(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.19.(12分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB=2BC,点Q为AE的中点.(1)求证:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.20.(12分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.21.(12分)在△ABC中,角所对的边分别为向量,向量,且.(1)求角的大小;(2)求的最大值.22.(10分)如图所示,直角梯形ABCD中,,,,四边形EDCF为矩形,,平面平面ABCD.(1)求证:平面ABE;(2)求平面ABE与平面EFB所成锐二面角的余弦值.(3)在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为,若存在,求出线段BP的长,若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由复数的除法求出,然后计算.【详解】,∴.故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.2、A【解析】

先化简求出,即可求得答案.【详解】因为,所以所以故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.3、D【解析】

连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【点睛】本题考查向量的线性运算问题,属于基础题4、A【解析】

化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【点睛】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。5、A【解析】

根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.【详解】若“是递增数列”,则,即,化简得:,又,,,则是递增数列,是递增数列,“”是“为递增数列”的必要不充分条件.故选:.【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.6、C【解析】

由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.7、B【解析】

画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.8、B【解析】

根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.9、C【解析】

把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解.【详解】解:由,得,∴.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.10、D【解析】

根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.11、A【解析】

过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.12、B【解析】

根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,则故选:B【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、②【解析】

根据新定义,结合实数的性质即可判断①②③,由定义求得比小的有理数个数,即可确定④.【详解】对于①,由定义可知,当为有理数时;当为无理数时,则值域为,所以①错误;对于②,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以满足,所以②正确;对于③,因为,当为无理数时,可以是有理数,也可以是无理数,所以③错误;对于④,由定义可知,所以④错误;综上可知,正确的为②.故答案为:②.【点睛】本题考查了新定义函数的综合应用,正确理解题意是解决此类问题的关键,属于中档题.14、【解析】

首先利用绝对值的意义去掉绝对值符号,之后再结合后边的函数解析式,对照函数值等于2的时候对应的自变量的值,从而得到分段函数的分界点,从而得到相应的等量关系式,求得参数的值.【详解】根据题意可知,可以发现当或时是分界点,结合函数的解析式,可以判断0不可能,所以只能是是分界点,故,解得,故答案是.【点睛】本题主要考查分段函数的性质,二次函数的性质,函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.15、360【解析】

先计算第一块小矩形的面积,第二块小矩形的面积,,面积和超过0.5,所以中位数在第二块求解,然后再求得平均数作差即可.【详解】第一块小矩形的面积,第二块小矩形的面积,故;而,故.故答案为:360.【点睛】本题考查频率分布直方图、样本的数字特征,考查运算求解能力以及数形结合思想,属于基础题.16、1【解析】

本题先根据公式初步找到数列的通项公式,然后根据等差中项的性质可解得的值,即可确定数列的通项公式,代入数列的表达式计算出数列的通项公式,然后运用裂项相消法计算出前项和,再代入不等式进行计算可得最小正整数的值.【详解】由题意,当时,.当时,.则,.,,成等差数列,,即,解得..,...,.即,,即,,,,即.满足的最小正整数的值为1.故答案为:1.【点睛】本题主要考查数列求通项公式、裂项相消法求前项和,考查了转化思想、方程思想,考查了不等式的计算、逻辑思维能力和数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】

(1)根据极坐标与直角坐标互化公式,以及消去参数,即可求解;(2)设两点对应的参数分别为,,将直线的参数方程代入曲线方程,结合根与系数的关系,即可求解.【详解】(1)对于曲线的极坐标方程为,可得,又由,可得,即,所以曲线的普通方程为.由直线的参数方程为(为参数),消去参数可得,即直线的方程为,即.(2)设两点对应的参数分别为,,将直线的参数方程(为参数)代入曲线中,可得.化简得:,则.所以.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及直线的参数方程的应用,着重考查了推理与运算能力,属于基础题.18、(1);(2)见解析【解析】

(1)联立直线和抛物线,消去可得,求出,,再代入弦长公式计算即可.(2)由(1)可得,设,计算直线的方程为,代入求出,即可求出,再代入抛物线方程,求出,最后计算直线的斜率,求出直线的方程,化简可得到恒过的定点.【详解】(1)由,消去可得,设,,则,.,解得或(舍去),.(2)证明:由(1)可得,设,所以直线的方程为,当时,,则,代入抛物线方程,可得,,所以直线的斜率,直线的方程为,整理可得,故直线过定点.【点睛】本题第一问考查直线与抛物线相交的弦长问题,需熟记弦长公式.第二问考查直线方程和直线恒过定点问题,需有较强的计算能力,属于难题.19、(1)见解析(2)【解析】

(1)连接交于点,连接,通过证明,证得平面.(2)建立空间直角坐标系,利用直线的方向向量和平面的法向量,计算出线面角的正弦值.【详解】(1)证明:连接交于点,连接,因为四边形为正方形,所以点为的中点,又因为为的中点,所以;平面平面,平面.(2)解:,设,则,在中,,由余弦定理得:,.又,平面..平面.如图建立的空间直角坐标系.在等腰梯形中,可得.则.那么设平面的法向量为,则有,即,取,得.设与平面所成的角为,则.所以与平面所成角的正弦值为.【点睛】本小题主要考查线面平行的证明,考查线面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、(1)证明见解析;(2)证明见解析;【解析】

(1)推导出,由是的中点,能证明是有中点.(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面.【详解】证明:(1)在三棱锥中,平面,平面平面,平面,,在中,是的中点,是有中点.(2)在三棱锥中,是锐角三角形,在中,可作于点,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【点睛】本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.21、(1)(2)2【解析】

(1)转化条件得,进而可得,即可得解;(2)由化简可得,由结合三角函数的性质即可得解.【详解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值为2.【点睛】本题考查了平面向量平行、正弦定理以及三角恒等变换的应用,考查了三角函数的性质,属于中档题.22、(I)见解析(II)(III)【解析】试题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论